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ABSTRACT

A compilation has been made of numerous topics in the theory of
compressible-fluid dynamics. The presentation is designed as a guide
for students as well as a source of reference material for the research
worker. The choice of material has been influenced by the needs and pro-
jects at the Los Alamos Scientific Laboratory, where much of the theoret-
ical work in fluid dynamics is carried out by numerical techniques on
high-speed electronic computers. There is, however, no discussion of

the numerical methods themselves.
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INTRODUCTION

The major emphasis in fluid-dynamics studies has gradually
shifted over the last few years. During the early days of aircraft

almost all processes of interest took place at speeds far less than
that of soﬁnd. Fluids could therefore be treated as incompressible, or,
as having a density which varied with ﬁime or space only, generally in
a predetermined manner. As aircraft speeds increased, other high-speed
phenomena became of ;nterest, and assumption of an incompressible fluid
was no longer valid for meny practical situations. As a result, new
analytical techniques were developed and applied to a variety of design
problems, especially in aerodynamics.

Meanwhile, interest has grown in the dynamics of fluids adjacent
to high-intensity explosions, and in the theoretical techniques neces-
sary for understanding the processes involved. The complexity of the
analysis has often required a change in the theoretical approach from
analytical to numerical. At Los Alsmos, various numerical methods have
been evolved and applied by means of high-speed electronic computers.
As a background for this work, it has been necessary to gather from
numerous parts of the literature anslytical techniques by which solu-

tions could be obtained for comparison with the numerical results.
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INTRODUCTION

The analytical methods sometimes required extension, modification, or
reinterpretation, or new techniques had to be.developed. It is the pur-
pose of this manual to present this analytical material in the hope that
it will be a useful background to others whose compressible-fluid pro-
blems are similar to ours.

This compilation is for reference as well as teaching. It thus
contains many detailed and alternative formulations which may at first
confuse the beginner; but at the same time it omits certain types of
elegant argument for which reference to original papers is more appro-
priate. The student interested in further details can profit from sev-
eral excellent books;* these have often servéd as basic references herein.

It is suggested that the student read quickly the first four chap-
ters of this manual and any subsequent sections of special interest,
and then return to the earlier chapters for detailed study or reference
as the need arises. The newcomer to fluid dynamics will find it useful
to have a qualitative feeling for the phenomena involved, before pro-
ceeding to the deteils of formulation. The rest of this Introduction

offers such a qualitative picture.

*
These include:

Richard Courant and K. D. Friedrichs, "Supersonic Flow and Shock
Waves," Interscience Publishing Company, New York, 1948.

R. von Mises, "Mathematical Theory of Compressible Fluid Flow,"
Academic Press, Inc., New York, 1958,

L. D. Landau and E. M. Lifshitz, "Fluid Mechanics," Pergamon Press,
Ltd., London; Addison-Wesley Publishing Company, Inc., Reading,
- Mass; 1959,
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INTRODUCTION
The first thing that is needed in a theoretical treatment of fluid
dynamics is a means for characterizing the fluid. Thus, for example, if
we have material in a box and wish to examine the dynamics of it, then
it .is necessary to specify certain field variables and try to determine
the menner in which they change with timé. Such field variables include

mass density, velocity of-each part of the fluid, pressure, internal

g

energy, temperature, and various other similar quantities. We shall
attempt to define these quantities in the following chapters but will
" here proceed on the basis of our intuition of their meaning.

To describe how these quantifies change with time from a given ini-
tial configuration, subject to prescribed conditions at the boundary of
the fluid, we must derive a set of governing equations. One of these.
will be a statement of the characteristics of the flnid itself, the
"equation of state" which describes in mathematical terms the relation-
ship, at any given instance and place, among such quantities as tempera-
ture, density, and pressure. If the material is a simple gas, then the
form of the equation may be quite simple, but if the material is anything
else, then the relationship may be extremely complicated or even impos-
sible to write in analytical form.

Concerning the dynamics of the gas itself, we shall show that all
processes teke place according to the dictates of the three fundamental
conservation laws of physics, namely, those of mass, momentum, and energy.

It is useful to examine the motion of a fluid from at least two

fundamentally different points of view. In one case the coordinate




INTRODUCTION

system will be fixed relative to the observer, while in the other the
coordinate system is considered to follow the motion of the fluid.

The former viewpoint is called Eulerian; the latter is called Lagrangilan.
The nature of the problem will dictate which form of the equations will
be more desirable.

For many applications it is reasonable to neglect the effects of
heat conduction and viscosity. As a result there are two rather remark-
able consequences. The first of these is that the entropy of each ele-
ment of the fluid remains forever constant. The second is that the
equations may lead to discontinuous solutions even if the initial and
boundary conditions are apparently very well behaved. The constancy of
entropy is discussed in some detail in Chapter II. The treatment of dis-
continuity will receive much attention in many parts of the manual.

The mathematical discontinuities are called "shocks." Their be-
havior is not goverried by the differential equations, which bécome
meaningless at a discontinuity; but properly treated, the mathemati-
cally discontinuous shock is useful because it closely represents a
true phenomenon in which such quantities as density, pressure, and ve-
‘locity may change very rapidly over a very small dista.nc-e.‘

The equations that are derived in Chapter I sﬁow that weak signals
are propagated through a fluid with a certain characteristic velocity
called the "sound speed." The sound speed will be shown to vary with

. temperature and density in a manner which deperds upon the equation of

state of the fluid. Generally, with an increase in temperature and den-
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INTRODUCTION

sity, the sound épeed goes uﬁ. Thus, if a compressive signal is formed
by a piston pushing into a gas, the gas near the piston is compressed
and heated so that the sound speed is increased above that which is
ahead of the disturbance. As the piston velocity increases, sound sig-
nals begin to pile up on one another, and the front of the disturbance
wave becomes sharper and sharper. This produces a shock. If, on the
other hand, the piston is withdrawn from the gas, then the sound speed |
adjacent to the piston goes down because of thevexpansive temperature
decrease, and signals from the piston are not able to overtake the dis-
turbance front moving into the fluid. The piston motion forms a rare-
faction and no discontinuity occurs in the fluid. We shall later
demonstrate more precisely the féct that shocks are formed only at the
fronts of compressive waves.

The two basic elements of fluid flow, shbck and rarefaction, will
prove to be the basic building stones for many useful analytical solu-
tions. We shall see, however, fhat it is seldom possible to solve the
equations simply, because they are nonlinear partial differential equa-
tions which lack the powerful solution techniques available for linear
equations. Instead we shall often have to generate solutions to prob-
lems by a careful piecing together of known parts of solutions; many
of the examples in ﬁhis manual have been formed in that way.

Almost all theoretical treatments of fluid dyﬁamics are based on

the model of a continuous fluid whose elements remain forever contiguous.

In reality, a fluid is formed of numerous molecules which may rapidly
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INTRODUCTION

move about so that neighboring particles at one instant may be widely
separated a short time later. It may thus seem remarksble that the sim-
plified model gives useful results at all. In Chapter VIII we have indi-
cated how the success of the continuous model can be explained, and also
have shown how the failings of the continuous model can be remedied some-~
vhat by inclusion of the effects of viscosity and heat conduction. In
the continuous model, viscosity is interpreted as a drag stress, whereas
in reality it arises from diffusion across velocity gradients. The equa-
tions with viscosity and heat conduction do not tend to give discontin-
uous solutions; indeed the detailed structure of a shock can be derived,
and the results agree closely with experimental measurements.

These qualitative features are illustrated in this manual by giving
solutions to numerous problems. In this way, the reader learns that
some situations in fluid dynamics are easily analysed; he will also quickly
realize, as he tries additional problems, that there are many epparently
simple situations for which analytical solutions are presently impossible,

The progress of this manual has profited considerably from a careful
study of the entire manuseript by Cyril Hirt, from a detailed checking of
several sections by Jacob Fromm, and from numerous discussions with my as-
sociates. The hard jobs of editing the raw manuscript, removing the numer-
ous inconsistencies in nomenclature, adding a coherence of style among the
chapters, and tending to numerous details leading to the finél form, all
with exceptional care beyond the call of duty were accomplished by Marion
Richardson. Readability of the final form owes much to the patient and

careful typing of Grace Cole.
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CHAPTER I
THE BASIC EQUATIONS

Introduction

By popular concept, a fluid is a mobile substance into which a
solid object can be immersed with ease but which does not sustain the
defined as a material for which the stress produced by a shearing strain
is independen$79f/thers@rgin. This definition does not exclude those
materials for which the stress depends upon the rate of shearing strain;
such fluids are called viscous.

No precise description of the dynamics of any macroscopic section
of fluid is ever likely to be possible; such a deséription would involve
the exact history of every molecule. There are, however, numerous situa-
tions in which theoretical results of high accuracy can be obtained with-
out such detailed knowledge.

The first basic requirement for any theoretical study of fluid dyna-
mics is a means for characterizing the macroscopic features of the fluid.
The second requirement is a formulation of the dynamical problem itself.
In this chapter, we describe these for rather idealized fluids, namely,

for those in which the effects of viscosity and heat conduction are
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I. THE BASIC EQUATIONS

negligible, and for which there is no internal source of energy (as would
arise, for example, from chemical reactions). We shall call such a

fluid a "simple fluid;" likewise, we shall often refer to a "simple gas."
In spite of these idealizations, the resulting equations will be very
useful for describing quite accurately numerous probléms of dynamics.

We shall be limited to those situations in which the fluid can be
considered as macroscopically continuous. A rigorous discussion of the
circumstances under which this is possible is beyond the scope of this
manual;'however, we can formulate the conditions loosely as follows. i
Consider that the space occupied by the fluid is divided into numerous
subregions. For each subregion, the instantaneous values of various
appropriate quantities are averaged over all the contained molecules.,
Then the fluid is continuous, for our purposes, provided that for all
quantities of interest a set of subregions can be found such that the
inter-subregion variations of the averages are, at every instant of
time, negligibly small compared with the averages themselves. This re-
quirement implies the following features: |

1. Each subregion is large enough to contain a large number of
molecules. -

2. Each subregion is small compared with any macroscopic feature
of the gross configuration.

~

With the continuity requirement satisfied, the true fluid can now

be replaced by an appropriate continuous modél. This substitution can

be accomplished by the use of some suitablé interpolation method applied

Tl




CHARACTERIZATION OF THE FLUID

to the subregion averages; the very nature of the continuity requirement
shows that it does not matter what reasonable method is used. In prac-
tice, the replacement is not actually performed, but the cbncept of it
is useful in the interpretation of results,

We now assume that there is no difficulty in talking about the
value of a fluid property "at a point," and that it is clear what is
meant, for example, by differential elements of mass, energy, and momen-’
tum, and gradients of density.

The derivations to follow are based upon two additional assumptions.

First, the molecules which are in a particular subregion at any given

time remain forefer in that same subregion; second, except for macro-
scopic slippage, every pair of contiguous subregions remains forever
contiguous. Actually, these assumptions applied to a.gas include a re-
statement of the neglect of viscosity and heat conduction.

We shall not dwell on\these awkward matters, because it is possible
to follow quite a different and much more satisfactory approach to the
formulation of the macroscopic dynamics. (An introduction to the alter-
native is given in Chapter VIII.) We shall here proceed on a "semi-
intuitive" basis, using a liberal interpretation of our basic assump-

tions as required.

Characterization of the Fluid

To completely specify the state of a fluid, it is necessary to
give the values of certain "field variables" for every point in the

fluid. Some of these are:

=15«




I. THE BASIC EQUATIONS
-; = Lagrangian coordinate. This is the permanent label which is
attached to a point moving with the fluid. It may be bchosen in any man-
ner as long as it is differen’c for each point. The symbol is as shown,
because frequently the lLagrangian coordinate is chosen to be the iJosition
of the point at some reference time (t = to) « Jts Cartesian components
are then Xyr Vo1 Ze (In many of our discussions, the subscripts will
be omitted when it is clear that the Lagrangian form is used.)
¥ = Bulerian coordinate. This is the position of a point rela-

tive to some external reference frame. The Eulerian coordinate is a
function of 5; and of the time, t.
Each of the following field variables can be considered to de-
pend upon the time and either the Lagrangian or the Eulerian coordinate:
p = Mass density of the fluid
*
V = Specific volume (V = 1/p)
(7, t)
o)
> J° The velocity could

also be called the specific momentum, just as 1 /2 1—1')1? is the gp_ggi_f}_c

p = Pressure
T = Velocity of the point [ Q=

I = Specific internal energy
T = Temperature

S

Specific entropy

' E = Specific total energy (E = I + 1/2 T )
This notation is used throughout the manual except as otherwise explicitly

stated. Additional terms are introduced and defined as they are needed.

*"Specific" quantities are measured per unit mass.
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ONE-DIMENSIONAL FLOW

One-Dimensional Flow

It is necessary to establish clearly the difference between two

types of "one-dimensional" motion of a fluid. In pseudo one-dimensional

motion, all quantities characterizing the fluid are functions of one
space coordinate only (as, for example, x in Cartesian coordinates or

the angle 6 in cylindrical coordinates). In true one-dimensional motion

et

there is the additional feature that all velocity components vanish

. except the one along that coordinate direction.

Conservation of Mass

Consider a closed surface composed of points which move with the
fluid; according to the assumptions of our model, the mass of fluid
within that surface will never change. This fact can be exploited in
the derivation of one of the basic fluid-dynamic equations.

As an example of the derivation, consider a true one-dimensional
flow. The mass per unit transverse area contained between the Eulerian

boundaries x1 and. x2 is

Thus Q '~

dm ax2 ax1 x2 ) 2 [apu ap:I
a=p(x2't>s%-'°(x1:’°)'a?+fx1 35'“=fx1 ox o5
This must vanish for any arbitrary interval, so that the integrand it-

self must vanish at every point:

g-§+—aap;“=o (1)

17




I. THE BASIC EQUATIONS

This is the one-dimensional mass conservation equation in Eulerian

coordinates.

In three dimensions, consider the closed surface to be a cube

at some instant of time. Then the mass within the cube is
X Jo P
X
1 N TR

and

]
e,
Ty

213
[55 + 3% (ou,) + % (ou) + 3 (puZ)dedydz

Again, the integrand mist vanish at every point, so that the equation may

be written, in vector form,

% 4 e(ed) = 0 (2)

The above procedure for forming the time derivative of a quantity

is quite general. Thus, if %(;at) is any quantity measured per unit vol-

ume, then the total of that quantity throughout some volume moving with

the fluid is

A =\]p Adrt &




CONSERVATION OF MOMENTUM

where dt is a generalized volume element, and the range of integration

covers the volume. Then one can derive, analogous to above

2 2, o) e

This formula can also be interpreted by rewriting it in the form

%% = g%k/; ar +\/%-%ﬁ?da ‘ ' | (&)

where use has been made of the divergence theorem to transform the
second term into an integral over the surface; fi is a unit outward
normal to the surface and da is an element of its area.

Thus, the total rate of change of A can be considered to arise
from two processes. The first term on %he right of (h) signifies the
chapge that would occur if the surface remained fixed — did not move
with the fluid. In the second term, fil da is the rate at which voluhe
is éwept up by the moving surface; multiplication by A gives the rate
at which the quantity is swept up. Thus, the second term "catches up"
with what was lost from the first term, in which the surface was con-

sidered fixed.

Conservation of Momentum

The momentum per unit volume is pﬁ: so that the total momentum in

any volume moving with the fluid is

-
M= p\?d’t’

-19-




I. THE BASIC EQUATIONS

*
Thus

- a -
% JI3E vt o

At any point, the force acting on a surface element, da, is (-fip da), so

that also

c'-

a
‘d—= -:[npda.

Transforming this to a volume integral and comparing with the previous

result, we find

B e ar- - [ e

Again, the integrand must vanish, and the momentum equation is

%Lf)+ (@) = - Vp (5)

Conservation of Energy

The energy per unit volume is pE and the rate of doing_work on an

element of its area is -ﬁopﬁ’ da. Thus, with no heat conduction in the

fluid

a%prdT-:-fﬁ-pﬁ’da

*
The quantity V-(pﬁ’ fi’) is obtained by considering individually the scalar

components of either T and combining results. Thus, V-(pﬁ’ ﬁ’) = (pﬁ’-V)ﬁ’
+ AVepl) or Ve(pT ) =@-V)pil + pu V-1). "

=20~




LAGRANGIAN FORM OF THE EQUATIONS

The same sort of manipulation as before leads to
9
9% + ve(pER) = - V+(pR) (6)

lagrangian Form of the Equations

The three basic equations, (2), (5), and (6), can be written as

the following equivalent set:

@+ 9= - oo (7)
D<§%+$V>:\*= -@ (8)
p<% + 17°V)E = - Ve(pu) (9)

In all three equations there appears the operator % + Qo V,

This is called the time differential operator ﬁl?ﬁ_g,..?h? ‘particle path.

To see the reason for this, suppose that one wishes to find the rate of ]

change of a quantity, A, per unit time along some space-time path char- |

acterized by dr and dt. Then

d\ _ O\, ar
Z-sxtxw

' -
. dr _ 8r> -
Along that special path for which Tl <&; S = u, then

o

d\ oA -
x5t ueVA

This special path is Just that taken by a point moving with the fluid.

Thus

21




I. THE BASIC EQUATIONS

%tl = (%é - @ZE‘)?J, TV (10)
(o]

where the subscripts are used to show explicitly what is being held con-
stant in each derivative. The notation involving the capital D will
occasionally be useful in this menual in designating an infinitesimal

change along the motion of the fluid.

Equations (7), (8), and (9) in Eulerian form may be transformed to
the lagrangian form. The process is most conveniently illustrated in
one dimension. As an example, consider the mass equation in which sub-

scripts show explicitly what is being held constant:

SRR Cw

We have seen from (10) that this can be written

@%)"o * "@Tu()t =0 (12)

To complete the transformation, we note that
P dx, = pdx (13)

where Po is the density at the time at which x = X This expresses
the fact that the mass between any two adjacent points is the same s
whether observed from the Eulerian or lagrangiaen viewpoint. Thus, with
p and u being functions of xo and t, and Py being a function of 5{0 y

(12) becomes

P20




LAGRANGIAN FORM OF THE EQUATIONS

0, £6) -

This is the lagrangian form of the mass equation.

The transformation can also be performed in é somewhat more ele-
gant fashion. First, consider the return from (14) to (11). Let the
Eulerian and Lagrangian coordinate systems coincide at time t = 0. We

then make the coordinate transformetion in (14):
t

X +J; u(xo,t)d‘t

t

=
1]

(15)

N
]

where the integration is performed with fixed X Thus

SEGICROION

t .
Now " " .
&) - @) e 2 |
% S o X,

where use has been made of (14). Then
t

5x> _1+f <5(D/D)> dt-1+%—
o

This result is the same as (13). Thus (16) becomes

&)@

= -2
P

Also,




I. THE BASIC EQUATIONS
&) -®) & - & @
ey = oo, \ow), * e B

or

@) @) @)
o]

If we put (17) and (18) into (14) and replace z —t, then we obtain (11).
The reverse transformation by this method is not as simple; but

is worth presenting since it shows more about the choice of po(xo) and

points out the procedure required in the more general three-dimensional

equations., We start from the Eulerian equation with z still replacing t:

(%)x . u@g)Z R p(g)z —o (9

Define

ox,t) = (&) (@
t
Then, from (15)
* du) T ou
u X
@=1+‘/O <$O/t dt=1+v/;<yo>c (3;)6.‘(3
Z

where we had to use (16), because (17) is as yet not known for this re-

verse transformation. Thus, using (19), we obtain

e o4 G) )]

2lm




LAGRANGIAN FORM OF THE EQUATIONS

which becomes, with (18),
t . ,
_ ® (Jp
@_1-f p(a?) at (21)
o) X

The integration is to be performed with X, constant, so that

@6

X X
[}

°l®

This may be integrated after division by ©, leading to

8p = K(xo) (22)

where K(xo) is an "arbitrary" function of its argument, which may be deter-

mined, however, by substitution back into the integral equation (21):

1‘ -/j K(:g) @—%)xodt =1+ K(x ) */c:t@%{‘—p—));codt

K(xo) K(xo)
1+ -

p Po

@
il

To agree with (22), we see that K(xo)

P, SO that combining with (20)

we finally obtain

<§x B bo
ox /) "o
t

and the transformation can proceed in a straightforward manner.
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I. THE BASIC EQUATIONS

Usually the analogous three-dimensional transformation to
Lagrangian coordinateg will involve such a complicated Jacobian that no
advantage is gained. In one dimension, however, we shall have several
occasions for using the Lagrangian forms, and it is useful to summarize

them here.

o p2 du
+ & =0
t pO 5§;
b B2 o (23)
o
OE LIS
Po 3t *3x_ T
° J

Time Derivatives of a Volume Integral

‘Let %(Eﬁt) be some quantity density; then there are two main types
of volume integfals of A-which will be of interest:

A(Eulerian) = f?\(?,t) dt

v
and

A(Lagrangian)= J 7\[;{ 1_'; »t), t:ld'to
o

The first one, which we have discussed before, is an integral over a

volume V moving with the fluid. The second, in which A is re-expressed

as a function of the Lagrangian coordinates, is an integral of A over
some fixed initial wvolume.

We have seen before (3) that

-26-




TIME DERIVATIVES OF A VOLUME INTEGRAL

dat t

aA(Eulerian) =i/ﬂ[gﬁ + vn(kﬁ3} at

The time derivative of the lLagrangian integral is simpler to per-
form; since each element of volume in the sum is constant, the deriva-

tive is

. AN ,t)
aA(1e ) _ ’
eepen) . [|07] w,
o

o]

Now, the time derivative of the Eulerian integral can be derived
in another illustrative way. We first transform it to a Lagrangian

integral:

dA(Eulziian) =f7\[f(17;,t),t] %o

Yo

vhere po/p is the transformation Jacobian (whose form follows from the

fact that p dt = Py d'ro). Thus

| dA(EulerlaQ) d/’_{<g§> [a(pt/p)}.*}'dro

r
o

where all quantities in the integrand depend spatially on the Lagrangian

coordinates. Now the mass equation (1&) can be put into the mixed form

(e /p) o o
[—s‘t—] ra

s
r
)
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I. THE BASIC EQUATIONS

where the divergence is Eulerian. Thus

sty [ (3] 205} ()
T = / T _’+ A Veu 5 d'ro
o) o

- [ DA v
"/‘[Dt"'}\vu:idf

v

where use has been made of (10). The derivative formula given before
follows immediately. This type of transformation appears at first cum-

bersome, but is sometimes extremely useful. Note the special case

which follows from a similar derivation.

One-Dimensional Conservative Form

In one dimension, the Eulerian equations may be written

and the Lagrangian equations may be written




ONE-DIMENSIONAL CONSERVATIVE FORM

a(DO/P) dqu
St T ox_
o)
dp u
Tg +g;CLo=O ? (25)
apoE "
>t X, -

Equations (24) and (25) are called the conservative forms. Integration
of any one of them over a fixed space interval (Eulerian or lagrangian,
as appropriate) reveals the reason. Consider the Eulerian momeﬁtum

equation as an example. With x, and X5 being fixed Eulerian positions,

we obtain

d (2 2
5t [ou ax = (pu +p)x=x1 - (pu +p)x=x2

Thus, there is no internal contribution to the timewise variation of
momentum in the interval; its momentum changes only if there are boun-
dary fluxes. In this case, the boundary flux is composed of two terms.
The transport term, pu2, measures the rate at which momentum is carried
by the moving fluid; the force term, p; measures the acceleration due
to external pressures.

The conservative equations are all of the form
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If F(x,t) is any arbitrary function of its arguments, then

OF
e x
OF
>

is the most general solution of the equation. Now

OF OF
= =D - A
dr azd‘t+3§dx B at ax

Since dF is a perfect differential, its integral around any arbitrary

closed path in the x-t plane is zero. Thus

j{(B dt -A éx) =0

This equation is equivalent to the original one. Thus, the one-

dimensional Eulerian equations in integral form are

~

f(pudt-pdx):O

j{[(pua + p)at - pu dx] =0 > (26)
f[(puE + pu)dt - pE dx} =0
J
and the Lagrangian equatioﬁs are
5
Jloes 2 |
(u at + ra dxo) =0
>
f(p dt - p udx) =0 (27)
j[(pu dt - p_ E dxb) =0

J
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These equations in integral form will be useful in later developments.

Other Coordinate Systems

The equations for a particular problem can often be simplified in
form if a ccordinate transformation is made. Various compilations have
been given of the equations in the more common coordinate systems (see,

*
for instance, Pai ).

A convenient starting point for transforming coordinates is the
set of equations in general vector, Eulerian form. Consider, for example,
the momentum equation:

-

If §} is one of the three unit vectors of some curvilinear coordinate sys-
tem, then the dot product of | with the equation will give the appropriate

component equation in the desired system:

au A - ap
P 3;3 + pRe[(W* V)] = - S
. n
where uTl is the component of velocity in the direction of %}, and dxn is

the change in distance along a path in the direction of ﬁ. Now -

L@ = (@9(FD) - T (T9)F]

The second term on the right vanishes only if f] is a constant everywhere.

While 7 is always constant in magnitude, it is not generally constant in

*
S. Pai, "Viscous Flow Theory, I - Laminar Flow," D. Van Nostrand Company,
Inc., Princeton, 1956.
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direction, and the second term does not vanish.

As an example, consider the transformation to cylindrical coor-
dinates. The three unit vectors in the radial, angular, and axial
directions are, respectively, ¥, 8, 2. We are thus concerned with find-

ing VW&, V9, and V2. In general in cylindrical coordinates,

~ A ~
LS I g
where the order of vectors is preserved throughout. Thus we must find,
for example, 0f/06. A graphical approach will be illustrative. The

vector ?2 - ?1 points approximately

in the direction of 6 (and will do

so exactly as 6, - 6, - 0). Also,

[o3

£ - £, has limiting magnitude

2 1

(6, - 6,) times the magnitude of

N "N A A ~ ~
£, or ¥. Thus (r2- r1)/(62-91) 0
and 0%/J6 = 8. In similar fashion,

the other appropriate derivatives

may be found, and Y& = (1/r) 66,

A A
ro="t
A AN N
V6 = - (1/r) 6r, V2 = 0. Thus,
A u2
N
T\ 0276y /1 T [(2-9)r] =—1;@—
u_u
T[(FV)e] = - =2

and the component equations of

motion are:

~32-
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2
u
95;—13+p(1?'v)ur- p?9= -%1; (28)
uu
) 5%9 + p(ﬁ%iﬁué +p z_e = - % %% (29)

- (30)

Notice, in passing, that one aspect of these equations can be

p 5= + p(TV)u,

given what at first seems a puzzling interpretation. If u6 = 0, then

Du
__zz-gg
P Dt T

(28) becomes

Thus r r
2 Dur 2
Jf O dt = -‘jp g% dt
T

o

where d1 is the element of volume of a cylindrical shell of length L.

1240 aur r2
f pogt—'d'l'o=-—21t1a[ I‘%dl’
1

rl,o

Thus

Define the mean radial speed,ﬁr, of the shell contained between Ty and

r
Jr 2,0 _
u =
po rdTo m ur

r
1,0

r. b
o Y

where m is the shell mass. Then

-33-
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an Ta 3

r _ _ r _

ng T 2“Lfr [’51'*' p:ldr
1

by

2
= (PA); 6100 - (PA)gupsige * 2"11/; pdr
1

where A is the surface area of the inside or outside of the shell. Thus
the acceleration of the shell is produced by more than the difference
between the external forces; even if these vanish, the internal pressure

within the cell causes its radial acceleration.

Equation of State

The eqpations so far discussed apply qQuite Benerally to all simple
fluids. Reference to any set of them — (24), for example — shows that
the number of equations is always one less than the number of dependent
variables, and thus insufficient for a complete description of any pro-
cess., The required additional relation is one characterizing the fluid
itself. It is called the equation of state; we often write it in the

form

p = £(p,T) (31)

and accept its existence as being an experimental fact.
It has been observed that many gases closely follow the "ideal

gas' equation of state:

p = NRpT (32)




THE PQUATIONS FOR A FLUID WITH NONLOCAL FORCES

where R is the universal gas constant and N is the number of moles per
unit mass (or the reciprocal of the molecular weight). Much of our dis-

cussion will relate to ideal gases.

The Equations for a Fluid with Nonlocal Forces

If each element of fluid is subject to forces exerted by other
than its immediste neighboring elements, then additional terms are re-
quired in the equations. (Such forces would be present, for example,
in a gas with net electric charge, or one acted upon by an external
gravitational field.,) The mass equation remaeins unchanged by such
forces. If the force per unit mass (the acceleration) is Eﬂ then the

momentum equation becomes, in'Eulerian coordinates,

aﬁ? -, =) 1 -
5_1; + (ro)u = - -p- VP + g (53)

The rate at which work is done by the external force on the element is

ﬁiéﬁ Thus the energy equation becomes

OE 1

S+ @VE = - 2 V(o) + Ty (34)
Suppose now that

=2>_ 2 e

g =g () + gyrt)

where Ea is the acceleration produced by forces from outside the fluid,
and E; is that produced by distant action on elements within the fluid.

Suppose further that Ea and E; both can be expressed as gradients of

-35=
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functions

g =-Vol(r)

Il

é’z =-V q)e(?,t)'

and finally, that
7,(7,t) = J::(?',t) KT - )as!

where the integration is over the entire volume of the fluid, and
(7T - F1) =& - T). These assumptions are not very restrictive; they
are valid for many physical situations of interest.

The momentum equation (33) can then be written

-
T | vt p) = 0 & - [p(Ft)alE,8) ¥ oF - ) ar'
r

so that, to demonstrate momentum conservation, we integrate over volume

d. - _ | =
asx/gu ar —\/;g1d1

where vanishing of the integral of the second term on the right follows

from
Second term E/fp(?,t)p(?’,t) v, o - ) drdr!
T
_ - N
= -_[/;(r,t)p(?',t) v, ®(r' - r) atdr’
r'
= - (Second term)

Thus, the total momentum of §he fluid is affected only by the eﬁternal

forces.
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The energy equation (34) can be treated in similar fashion. We re-

write it in identically equivalent form

2 [pE + 3o(@, + CPE):I + V-[pﬁh + 3 ollo, +9,) + pWJ =

N [B(qq + @) oo
2o [ w9+ %)

wherein use has been made of the mass conservation equation (2). Again ve

integrate this over the whole fluid and arrive at the result

d L -
a‘E [QE + 2p(q)1 + q)a):] at = 0

Vanishing of the integral of the right side of the equation is demon-

strated as follows:

Integral

e, + 9,)
%\/; [‘-—155-42- - GzV(¢1 + ¢2)} dt

2 l: Ap, + 9,) -
’éf P ¢ (q>1 + sz)V-pu} dt

where we have dropped a term which integrates to zero. Using the mass

equation we get

e, +9,)
:%f [p——g——'t 2-(¢1+¢2)%§}d1

o
39 g’?ﬁ"”* %f<°?§ - q’e%%)‘i"

Integral

]
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The first term vanishes since total mass is conserved. Consider one

term in the second part:

%
[o 5@ ar=[fa@e oF - ) & ol@,e) anae

= [Jo@,0) o - ) 2 o(@t) anart

Ef“’a%%‘”

so that the second integral is self-cancelling. Thus it is shown that

the total "potential” energy of the system is

i
2 ﬁa(¢1 + @) dr

and this plus the kinetic and internal energy of the system are altogether

conserved.




CHAPTER II

DISCUSSION OF THE EQUATIONS

The Polytropic Equation of State

The specific entropy change, DS, along the motion of a point is de-

*
fined by the equation

Tns=DI-2§Dp (1)
, p

. The second law ofvthermodynamics states that DS is a perfect differen-
tial; that is, that the entropy at any point in a fluid is a function of
the instantaneous state at that point. For an ideal gas, with equation

of state (1-32),

Bp
P

DS =

I - P

M-

Now, since DS is a perfect differential, here considered a function of

the independent variables p and I, we have

oS oS
DS:ETDI+FDDp

*See, for example, P. S. Epstein, "Textbook of Thermodynamics," John Wiley
“and Sons, Inc., New York ]957. .
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Comparing these two equations, we see that the condition of exactness

applied to an ldeal gas 1is
®_1 B m
oI T dp "o
from which

o(1/T o) NR
JﬁélZ)T(B')O

0 that T is a function of I alone. In an ideal gas, the specific in-

ternal energy is a function of temperature only. For many gases, it is

sufficlent to keep only a few terms in the Maclaurin expansion of I as

a function of T:
2
I=a+DbT + cT + **°

The internal energy can be chosen to vanish at T = O. (T is thus the
absolute temperature.) Those special gases for which only b # O are
called "polytropic.” Mathematically, they are relatively simple to
handle.and, under standard conditions, they often represent real gases

quite closely.
For such a polytropic gas it is customary to define the dimension-

less constant:

= NR
7_.1+.b

in terms of which the polytropic equation of state can be written

(2)

p=(y-1)pl




CHANGES OF STATE IN A SIMPLE GAS

The significance of the constant, b, can be seen by a considera-
tion of the process of adiabatic (reversible) heating of the gas. In
such a process the heat change along the motion of a point is

DQ = TDS, so that, from (1)

DQ = bDT - < Dp = bDT + pDV
5

P

Thus, if the volume is kept constant, then

B

constant

so that b is the specific heat at constant volume. If, on the other hand,
the temperature is changed at constant pressure, then, since DV = (NR/p)DT
[obtained from the ideal-gas equation of state, (1—32)], we obtain
(%%) = b + NR
p=constant
which is the specific heat at constant pressure. Thus y is the ratio of

these two specific heats.

Changes of State in a Simple Gas

As long as the field variables are continuous, the differential
equations of Chapter I are meaningful; we examine some of their proper-

ties starting from the Eulerian form

= - pVhG?

qls
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-
Du
PpT T T VP
DE _ -
ppg = - VeRu

For E, put I + % ﬁiﬁz and the third equation becomes
-3
pP-:E+ pﬁ)’%= - pVU - WV

Eliminate DﬁyDt by means of the momentum equation and V“ﬁ’by means of

the mass equation, and the result is s
o1 - &5 Dp =0 (3)
P

Comparison with (1) shows that the specific entropy of each point re-

mains constant as it moves with the fluid. The value may differ from

point to point; if it does not, then the fluid is called "isentropic,”
and the above result shows that it remains isentropic.
One of the field variables can be removed from (3) by use of the

equation of state, and the result is an equation which always can be in-

tegrated, yielding the "adiabatic equation of state.” If, for example,
I is eliminated by means of the polytropic equation (2), the integrated

result is

p = AT )e’ ' | (&)

where A(E;) is an arbitrary function of the lagrangian coordinate. This

is the adiabatic equation of state for a polytropic gas.

The quantity A(EZ) is related to the entropy; the relation can be

4o




CHANGES OF STATE IN A SIMPLE GAS

seen as follows. Suppose that by some process the values of p and p are
changed at some point in such a way that the entropy is changed. Eli-

minate T and I as they occur in (1), (2), and (I-32) to obtain

e )
P
From (4),
DS =;—NE{—1 D [ln A(ro)}
Thus,
S = ;Eg—T in A(?;) + constant = S_ + 7N? T 1o (ﬁ;) (5)

Note that as T — O for constant density, p -0 and S » -, Thus, no gas
can behave as polytropic for very low temperatures.

For any simple fluid, the entropy of any element remains constant
as long as the equations of motion are valid. It will be shown later,
however, that certain initial-value,'boundary-value problems do not
possess solutions which are everywhere continuous, even if the initial
and boundary conditions are continuous. Moving surfaces of discontin-
uity can arise, and at them the equations become meaningless. A special
treatment is required, and one can be found which gives a useful meaning
to these discontinuities, but a consequence of the treatment is that
there is a change in entropy as a discontinuity passes over an element

of the fluid.
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As soon as the real effects of viscosity and heat conduction are
added to the equations, one no longer can derive the result DS = O. Heat
sources due to chemical or nuclear reactions also result in entropy pro-
duction. These properties of nonsimple gases will be exhibited in Chapr

ters VIII and IX.

Angular Velocity and Circulation

Relative to some axis defined by the unit vector §, the angular

velocity of a fluid element is

w
q

_§rxd
2
r
where T is a vector from an origin on the axis at the nearest point to
the element.
To find the average angular velocity about § in the neighborhood of
a point on @, we proceed as follows. First, find the average on a circle

centered at the point and perpendicular to 4. This average is given by

. ~ - ~p
—  [QFxT . _ axr .E_fdr°u_lfﬂ -2
2“H'Dq___¢‘_::é_—dr— T dr T r " R q X V'u da

where the line integral has been transformed to a surface integral over

the plane surface bounded by the circle whose radius is R. Thus, the

value is

© =—1—é-’q‘-fo3da
T o

If the circle is small enough that VX T varies little on it, then




ANGUIAR VELOCITY AND CIRCULATION

f VX T da - n:R2VX 1?; in the limit as R — O the replacement becomes
correct if the velocity curl is continuous. Thus, the average angular

velocity component over the circle is

- 1 A -
w =54qg*VXu
a 2 4

independent of the circle size, and it follows that the angular veloc-

ity of a point in the fluid is

u’%:—é—vxﬁ’ (6)

The quantity VX U is called the vorticity.
Actually, the averaging does ‘not need to be performed over a cir-
cular path. Thus, for an angular averaging over any path in a plane

perpendicular to @,

2n s
- 1 g X r-u
®a " 2xJo 2 as

where 6 is the angle between ¥ and some fixed initial value of r. Now
T = rf where i is a unit vector which is a function of 6 only; likewise,
r can be considered a function of 6.

Expand T in a series about the origin:

-
D=0 + (r0U_ + *+-
o o

and restrict r(@) to be so small that the terms beyond those shown can

be neglected. Then
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e 2 .
- 1 ~ ~ __0- . -
®q = Bx a X n'[r + (n V)uo] ae

Integration of the first term in the bracket gives zero, so that
2%

— 1 A ,\. /\‘ -
wq_—2—§ j; an(nV)uode

To perform this integration, we put I? = R wherein R = constant. Then

RE x £ do = aR and

_ ] (ﬁ"v)ﬁ; ‘@R
®q T 51R f}( R
-

Now, to the same order of approximation as before, ¥ =u_ + (R*V)T..

(o] (o}
C_l) =—1—_f1?.:_g£)
q 2mR R

which is the same form as before with integration around a circle. Note

Thus,

that this result would not have been obtained for lengthwise averaging
along an arbitrary path.
To see how the angular velocity of the field changes with time

in a simple fluid, we start with the Fulerian equation

-
%+(13’-V)1?=-%Vp

For a simple isentropic fluid, p is a function of p only, and the right
side of the equation can be expressed as the gradient of a function.

Taking the curl of the equation, we obtain

2 §+ vV X[(W*V)u) = 0




ANGUIAR VELOCITY AND CIRCULATION

Now

(DT = £ ATD) - Tx (VX D)
and so

0B -

§E= V X (u)((l—)))

After expansion of the right side, this can be transformed to

D&

ﬁ = ((-S)-V)I_J.’ - ﬁV-ﬁ’)

Note that if @ = O at some instant and at some element of the fluid,
then its rate of change along the motion of the element is also zero.
Thus, if ® = 0 for the entire fluid at some instant, then it continues
to vanish for all later times, regardless of the motion of boundaries
(provided, of course, that the fluid remains isentropic).

If, at some time,the vorticity is nonzero, then it will, in
general, éhange with time. There is, however, for a simple isentropic

fluid & related invariant called the "circulation,” I's It is defined
r =‘yrﬁid? (7)

where the integration is performed about some closed loop, every point
of which travels with the fluid. The relation of circulation to vor-
ticity may be demonstrated by transforming the integral to a surface
integral over any continuous surface bounded by the loop. Let @i be a

unit normal to the surface and da the area element. Then
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—
1

f(ﬁx V)7 da

afﬁ-a‘)’ da | (8)

3
]

To prove the invariance of I' under the conditions stated, we differen-

tiate along the fluid motion

- bed
Dro_ Du .=, 6 - Ddr
E-E—fb—% dl'+uth

-
The quantity %dg- can be interpreted by reference to the diagram:

( d?) t+5t

-y
u'st

(a7),

pory
T and T' are the velocities at each end of dr at time t. They carry ar

to a new position at time t + &t, such that

Dt + (d?)t+5t = 5t + (d?)t

Thus, ¢

-
%%:= Lim (T - T)




ANGUIAR MOMENTUM

and

= .

22 - (@@ OT = 3 (F V(D)
DW

Now also, DT’ for this fluid, is the gradient of some function, say ¢

(that is, VO = -:; Vp) and so

X fv a@e-ord

This can be transformed to a surface integral which will involve the curl

of the integrand as a factor, and thus va.nis}}, proving the invariance of I'.
Note that it follows from (8) that in two-dimensional plane flow,

&V is a fixed constant for each point moving with the fluid. This fact

can also be derived as follows. In three-dimensional flow of a simple,

isentropic fluid, we have seen that

DD =
X - (BT - A VD)
Dt
Thus
V8 - DV DS - - — =D "
T P + V DT = ovVv.a + V[(e-VU - @ V-m] = V(@ V)u

In the special two-dimensional case, ® is normal to the surface across

which 2 varies and the right side vanishes.

Angular Momentum

The angular momentum about the origin of coordinates of an element

of fluid of volume dt is
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dmM=pTXUar

so that the total for a volume V moving with the fluid (which initially

occupied a volume VO) is

% - oxTar=[o FxTar,

\4 v
0

so that

- = du
Xu+rxX E%D dTo

o
25,
]
<:‘\
O‘O
72N
1)

The first term in the parenthesis is zero. Using the momentum equation

(I-8) we may put this into the form

which, finally, can be transformed to the surface integral

o

m__ A b d
It -‘/pn x pr da

where fi is the unit outward normal at the surface area element da.
This result shows that angular momentum of the fluid changes with time
only through a surface flux; the angular momentum of an isolated fluid

is identically constant.
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Local Decomposition of the Velocity Field

At any instant of time, and for any point in the fluid (chosen to
be the origin of coordinates), the velocity field can be expanded in a

Maclaurin series:
nr) = u +(r-V)u + 0 (22)

where~0‘(r2) means neglected terms of second or higher order.

We now introduce component notation in which i, j, and k can indi-
vidually designate x, y, or z. Thus uj can refer to u, or uy or u;.
In addition we shall employ the summation convention such that if any
index appears twice in a term, then summation over all three coordi-

nates is implied. Thus, for example,
du, aui du, du

i

= i i
uj xj:zuxs'}-c—+uy-§—y+uz—§-z

in which expression i may still be x or y or z. With this notation

the Maclaurin expansion becomes

uy =t Xy '&i?o +0 (%)

We now define the symmetric and antisymmetric tensors

du, Ou

— 1 1
D13=2<53§+5§i>
. aui Ju,
913533"(35:_3'&9

in terms of which
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2
u, o= w4 xJ.(DiJ + ﬂiJ:L + 0 (r%)

The significance of Dij can be seen as follows. The length of a dis-

placement, ds, corresponding to coordinate displacements of dx, dy,

and dz is given by d32 = dxidxi. Now

D S Sy

D (% ! _
ﬁ(dxi)=1_5"5<:T30‘b‘3<> _Bx—j;dxdo_&gdxj

where subscript zero here means the Lagrangian coordinate, which does

not change with time. Thus

9—<d2>—2dx auidx

Dt \*® /= i&‘J' 3
ou

=2 dxj 5;? dxi

where the two forms arise from interchanges of the dummy summation in-

dexes. If we take the average of the two forms, we get the result

D 2
DT <?s > =2 Dij dxidxj

Thus, if Dij = 0 at some point, then the length of any displacement
near that point will remain constant as the point moves with the

fluid. Idkewise if Di = 0 everywhere, then the fluid is perfectly

J

rigid and its motions are limited to translation and rotation only.

local vanishing of D,, also means local translation and rotation only,

iJ

so that x Qij is thereby interpreted as representing the rotational

J

component, while Dij represents the deformation.
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PROPAGATION OF SMALL DISTURBANCES

Note that

-1 2
*Pig = 2 3 O o ()
so that, with
=1
D= 2 X'j)lKDjk

we have

oD 2
u o= (-5;:1> + (xjﬂij)o +0(r%)

o

A straightforward comparison of components of x jﬂi 3 and the ith compon-

ent of (@ x T) shows that they differ by 0(x2) so that, finally,

q= ?0 + (VD)o + &% ?)o +0'(r2)

The velocity field has been decomposed locally into a translation, a

deformetion, and a rotation.

Propagation of Small Disturbances

What is the manner in which a very small disturbance is propagated
through a region in which the field variables are otherwise constant?
The region is isentropic so that everywhere the pressure is a function

of density only,
p = p(p)

We use the Eulerian equations
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II. DISCUSSION OF THE EQUATIONS

+ p(TV)W = - Vp

M

%% + pRT + (TV)p = 0
Define a positive quantity c (which we will here show to be the sound

speed) such that
c =y o : (9)

and also substitute

-
u
o

-
u -

+
1
pp + P

c—-Cc +¢C
o] 1

-3

W, and c_ characterize the undisturbed field, and p,, W,

where Py uo,
and c, are relatively very small perturbations. Then the equations

become, to lowest order in the perturbations,

o,
LI (T 9T, = - c® v
Po 3t PorYo 1 o P

ap1 - ;. '
-a—E- + poV°U.,' + (U.O‘V)p,l =0

We now transfer to a coordinate system moving with velocity E; relative

to the original fixed system. In this new coordinate system, the equa-

tions become




SOUND WAVES IN A VARIABLE-DENSITY ATMOSPHERE

o,
1
Po3E =7 % P
ap]
= = p Veu
ot 1
-ﬁ

From these two equations u, can be eliminated, giving

2
9p,

2
— - Ve =0
ot
This is the familiar wave equation, for which the general solutions are

waves propagating with speed co. Thus small disturbances are propagated

relative to the moving fluid with gpeed c .
(o}

For a polytropic gas, for example,

c ﬂ/? =y oy - 1)1 =,/»RT (10)

In general, 02 is the constant-entropy pressure derivative with

respect to density:

=),

With a general equation of state in the form I = I (p,p), the formula for

=constant

sound speed can thus be written

_29a
c2-P P S
T T2 o1
° %

Sound Waves in a Variable-Density Atmosphere

The time-independent solution of the one-dimensional Eulerian
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equations with external-acgeleration
p g-: + pu gﬁ = = c2 %}e{‘f pg(x)
%%-+ o) g% + u g% =0
gives the equilibrium state of a variable density fluid. We assume

that the sound speed is constant. Then the equilibrium solution is

given as

13
o

u (x)

P exp[—-%f&(:c')df]

c "o

pe(x)

il

which includes the boundary condition Pe = Py at x = 0. We look for

solutions differing only slightly from the equilibrium state

u< e

p = pe(x)ee, €<< 1

Substitution of these inﬁo the equations and elimination of all but

lowest order terms lead to

% ,du_ _u %
ot &--pe?)?
du 2 de

5_—6—!-(! 5;{'=O

Note that if Pe is constant, then these become the wave equation with

signal speed c.
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SOUND WAVES IN A VARIABLE-DENSITY ATMOSPHERE

Consider the special case in which g(x) = constant. Then

(x) = egx/c2
plx) = P

and the equations, with € eliminated, become

Substitution of the progressive-wave solution
= A elax eu»t

shows that the condition for solution is

w? 02c2 - iga

and that A is an arbitrary constant, with dimensions of velocity

(whose magnitude, of course, must be mich less than ¢ for validity of
the perturbation approximation). If the wave length of the signal is
small compared with the distance over which pe/po changes appreciably,

then @ can be approximated by

+ _ig
o=~ * (ac 2c)

Thus ® has an imaginary part, corresponding to a change in amplitude
of the wave; as the wave moves in the direction of decreasing density,
its emplitude increases, and vice versa. Along the line x = + ct,

u = A exp(- gx/202) so that, along the motion of the signal, p W is

constant.
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CHAPTER III

CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES

Characteristics

One of the most powerful methods for obtaining solutions of the one-
dimensional hydrodynamic equations is called the method of characteristics.
As an example of its application, consider the problem of solving the one-

dimensional Eulerian equations for a simple, isentropic gas
ou du_ 20
PR MR o

0 0 Ju
U TP

(1)

The sound speed, ¢, is a function of the density, so that we may intro-~

duce a new function, 0, defined, to within an arbitrary constant, by

ao = 8p (2)

Then (1) becomes

Srug.
(3)

35 +u 3— +c




CHARACTERISTICS

wherein ¢ is now considered to be a known function of ¢. By summing or

differencing these equations, one cobtains

£—(u+a)+(u+C)§§(u+0)=0
(4)
g% (uw-0)+(u-c) %; (u-0)=0

From the first equation, one can see that along a line in the x-t
plane such that dx/dt = u + ¢, the quantity (u + o) is a perfect dif-
ferential and the equation can be integrated. With a similar result

from the second equation we may write

constant, along ox | u+c

at (5)

=4
+
Q
n

c
'
Q
it

constant, along — = u - ¢

These are the characteristic solutions, and the families of lines
dx/dt = u * c are called the characteristic lines, or simply, the
characteristics.

These characteristic sblutions are not, in general, complete;
they do not necessarily allow the features of any applicable flow
field to be determined directly. They are, however, extremely power-
ful aids in obtaining solutions in certain special cases, or in cases
when parts of the solution can be obtained by other means.

As an example of the use of the characteristic solutions, con-

sider the problem of determining the effect on a gas, initially
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III. CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES
at rest, of a piston being withdrawn
X 7

/«’1;-Sound signal from it. Up to t = O, there is a

- dx piston at x = 0, and gas at rest

id for x> 0. At t = 0, the piston

commences to move with uniform
velocity, up, in the negative x-
direction, and a sound signal pro-
ceeds into the gas. We now attempt
Piston path - to connect the sound signal and

dx
" Y piston-path lines with a family of

characteristic lines. The line dx/dt = u + ¢ is of no use, since along
the sound signal,u = O, and the characteristic lies along the signal
line. The line dx/dt = u - c, on the other hand, has negative slope at
the sound signal line, hence intersects it. Furthermore, this charac-
teristic has negative slope throughout the flow field between the sound
signal and the piston path, because u < O and ¢ > 0. Also, the slope
is more negative than that of the piston path, assuming that c # 0 any-
where within the flow field of interest, so that each characteristic

dx/dt = u - ¢ will also intersect the piston path. Thus

or, since u, = o,
o =u +0 (6)

For a polytropic gas, for example, ¢ = 2c/(7 - 1), so that
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CHARACTERISTICS

c=1—-——lu +c
P 2 P o

Since up < 0, the sound speed is less than co at the piston; the more
negative the piston speed, the smaller would be the sound speed there.
This fact makes plausible the assumption that ¢ # O in the flow tield,
with the exception being the case in which cp = 0. Ir the piston is

withdrawn any faster than the critical speed at which cp = 0, then the
gas cannot follow; a vacuum occurs between the escaping gas front and
the piston. This cfitical piston speed — called the escape speed of

the gas — is

= -2 (1)

u
escape y -1

Notice that cp is independent of time, simpliy because up and c0 are
independent of time. It does not matter where the two intersection
points are along the sound-signal and piston paths.

The method of solution is also valid if up varies with time, as
long as a shock does not interfere with the characteristic line.
(Note: If the piston velocity persists for sufficient time at values
less negative than any which it has previously attained, then a shock
will form.)

An interesting generalization of this problem can also be solved
by the method of characteristics. Suppose that the piston is replaced
by a wall which has mass per unit area m. Up to t = O, the wall is

held fixed at x = 0; it is then released and moves away because of the
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III. CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES
gas pressure exerted on it. What is the history of its motion? ILet sub-

script w refer to conditions at the movable wall. Then

du

—_
B3t~ " Py

The characteristic equation (6) is again applicable; in terms of sound

speed,

— (e, - ¢,)

Now 2-1
N
c —
W (o)

so that we now have three equations for determination of the three un-

0
"

knowns, uw, P, and cw. There is one constant of integration to be de-
termined in the solution; for this we specify that u, = Oat t = 0.

Then the solution, after some manipulation, is found to be

_2% [1 _E (7+1)]

[+
|

w oy =1
- (7+1)
PW PO"
—_(2=L
cC =c¢c = (7+1 )
W o

where

== €;O<oo>

Thus as t —» o, uw approaches the gas escape speed; the wall mass only

affects the rate at which the final speed is approached.
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SIMPLE WAVES

Simple Waves

Suppose that in some region of the x—t plane the flow field is in
8 constant state: u = Us g = 00 everywhere within the region. The
constant-state region can be bounded
X Nonconstant region

above and/or below by regions in

which the flow field is not constante. dx = u c

The boundary lines will either be

shocks, or else they will be straight Constant-state
region

characteristics. If they are not

Nonconstant
shocks, then the boundaries of the Region
nonconstant regions (the disturbance Co
boundaries) will propagate into the T

constant-state region with sound speed relative to the material, and

thus will have slope u -~ s being, therefore, straight characteristics.
The most important fact, now to be established, is that the flow

in the adjacent regions will élways be of a particularly simple form.

Consider first the lower nonconstant region. Through it will pass the

family of characteristics dx/dt = u - ¢, which, at the disturbance

boundary, have slope u, - co, and hence intersect it as long as c, # 0.

Along each of these characteristics u - o is constant; indeed, u - ©
will be the same constant for all members of the family of characteris-
tics which intersect the disturbance boundary, since along that boundary
the constant is u, - UO. Thus, throughout the region adjacent to the

region of constant state, u - o will be one fixed constant. Likewise,
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III. CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES

one can prove that throughout thé nonconstant region above the region
of constant state, u + o will be one fixed constant. Any region in
which u + g oru - 0 is a fixed constant throughout is referred to as
the region of a "simple wave.' The extent of the region of a simple
wave adjacent to a region of constant state is limited by the require-
ment of contact with the disturbance line through a characteristic.

In the case that e, = 0, no infinitesimal disturbance can pro-
pagate into the constant-state region; any wave propagating into the
region must therefore have finite amplitude at its front. Such a dis-
continuous disturbance is a shock and requires separéte treatment.

Consider now the example of a simple wave propagating in the
positive x direction into a constant-state region in which u, = 0.

Then

and the two equations in (3) become the same,

%% + (o - o + c) %% =0

which has the general solution

o="Fx - (o - o, + e)t]
or
0 =F[x - (u+ c)t]
(8)
u=0 -0 .

o




SIMPLE WAVES

wherein F is an arbitrary function of its argument.

As an example of the use of this solution, consider the problem
of determining the motion of a polytropic gas disturbed by a piston.
It is assumed that up to t = O the piston is at rest, so that a semi-
infinite region of constant state, with u =0, ¢ = 9, has been estab-
lished. Subsequent to t = O, the piston moves with prescribed velocity
v(t) to positions x(t) (such that v = dx/dt). For a polytropic gas,

o =2c/(y - 1), so that (8) can be written

2c 1
o = - r+1
o +u-= F[x (cO + u)t]
or
2c >
ec_ _z_:__l( _0_)] A
> F[x — c o t (9)
and
2
u= (c - co)

Thus, the function F is to be determined‘by substituting into (9) the

known conditions at the piston

2c
0
y -1

= F(- cot) t <0

(10)
2¢c
(o]

7y -1

+ 0= F[x - (co + Z_%_l U)t} t>0

and F(0) lies between 2co/(7 - 1) and 2co/(7 - 1) + v.
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III. CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES

Example I

The problem of withdrawal of the piston at constant speed was
partially solved earlier in the chapter. Here we may solve it com-
pletely . (The same problem is solved more easily in Chapter V; we use
this method here for illustration, because of its power for more com-
plicated problems which cannot be treated by the procedure of Chapter V.)

In this case, v is a constant (v < 0) and x = vt. From (10)
2¢
0

2c
o)

+v E<O0
y =1

F(&)

where £ is any argument of F.

This solution, put into (9), becomes

-
2c 4 2c
2c]= 01 f‘orx-7 :(c--—:0—1—>t>0
7 - 7y - Y - V4 (11)
2c 2c r
2 _ 9 4y forx-Lt] (- °>¢<0
y -1 y -1 y -1 7y + 1 J
or A
c=c for x> c t
o o
> (12)
2c 2e y + 1
ot SL for x < (co + V)t

P

The first statement says that the signal propagates with sound speed.
The second one states that between the piston and the path given by

X = [co + [(y + 1)/2]v}t, the sound speed is a constant, and the result is
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1dentical to that in (6) for conditions at the piston. (Note that if
v=- [2c /(7 - 1)], the escape speed, then the thickness of the constant-
state zone next to the piston is zero, since its boundaries both move

with piston speed.)

Finally, in addition to (11) we have

2¢c 2¢c 2¢c
o + 0 < ac < o for x - Z—:;l-<é - ——11{>t =0
7y -1 Y+ 1

y -1 7 -1 y -1
or
7
e .- 1 2co N %)
y+1\7-1V %t
7 + 1 X \
and, from (9), ¢ for e+ Ifm— v <3 <e, (13)
w=—2-(%-¢
Ty 4+ 1\t o
P
Example II
From (9) may be calculated the instantaneous slope of the function
c(x,t):

(7-1)F'[’7-:<'7+1>{L (1%)

o _
o 2+(7+1)tF[x—Li-l< ——;——1—>c]

where F' means the derivative of F with respect to its argument. Thus,

if F(x) has negative slope at ény time, then the denominator may even-

tually vanish; the result is a shock.

As a specific example, consider the problem of determining the
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III. CHARACTERISTIC SOLUTIONS AND SIMPLE WAVES R

effect of a uniformly accelerating piston, moving into the gas. In this,

with acceleration s,

v = at
X =3 at2
and (10) becomes
2co
F(e) = £E>0
7 -1 (15)
[1 2 + 1 :l 2c0
F|3 at” - (co + 2;5—— at)t| = o + at t>0

We set the argument of F equal to § in the second equation of (15) and

solve for t

(o]
t= -4 L co2 - 2v7at

where the sign has been chosen such that ¢t = O when £ = 0. Thus

Fe) = —2+1 T /2.
(¢) ;(h c, + 5 c, 2yat £E<O0

2c
[¢)
y -1

(16)

F(t) £E>0

Combining this with (9), we obtain

2¢c y + 1 1V/ 2 l 7y + 1 ( o
= + - - { - -
3 ( 7y © c 2yal x T \¢ 3 x<ct

2c ( 7
x>ct
o

S\

3 K3 » J
(The condition x < cot in the first equation follows from the condition

x-(y+1)/(y -1) {c - [2co/(7 +1)]) £t < 0. This can be verified by
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noting that at the point x = cot, c=cy in the solution that follows. )

The equations (17) can be solved for c:

_r*+1 x =1
55 (co + at)

+ Z—:—l e+ (y - 1)a c bt - 2yax + (Z——-—) 822 x<ect L (18)

c=cC x>c t
o o J

(As a check on this solution, it may be noted that at the piston, where
x=1/2 at2, (18) gives 2¢/(y - 1) = 200/(7 - 1) + at, being the result
obtained previously — see (6), which is perfectly valid for a piston
speed varying with time.)

The envelope in the x—t plane, of values such that the squarz
root vanishes in (18), is a path of particular interest. Aléng it,

ac/ax is infinite so that the path defines a shock, whose position

xs(t) is given by

2
x (t) 2;a [c 2, (y - Va c b+ (Z—%—l) aeta] (19)

This is valid, however, only for x, < c t, or for t > 2co/(7 + 1)a.

Hence s shock forms at time and position

2
2¢c
t o . 2¢, (20)

S+ 1)a "G+ Ve
and proceeds initially with speed co. The solution cannot, however, be
believed after the initial formation of the shock, since thereafter the

flow pattern is no longer that of a simple wave.
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CHAPTER IV
SHOCKS

Description of a Shock

The compressive-piston problem of Chapter III shows that there
are circumstances in which the differential equations predict the flow
field of a flﬁid to develop a discontinuity, or shock. So far, we have
not discussed any procedure for handling such circumstances; the differ-
ential equations become meaningless at é shock and offer no clue for
subsequent treatment of the discontinuity whose formation they predict.

The concept of a discontinuous shock is very useful, even though
the field does not becﬁme really discontinuous. Actually, where the
differential equations predict formation of a discontinuity, a very
thin region is formed over which the field variables change extremely
rapidly. The structure of these regions is discussed in Chapter IX,
where it is shown that the inclusion of viscosity effects in the dif-
ferential equations removes the tendency for the equations to predict
discontinuities. It is further shown, for example, that shocks in
air are commonly a small fraction of a millimeter in thickness, S0

that in a study of interaction with large bodies, the discontinuous

approximation may be very good.




DESCRIPTION OF A SHOCK

There are two types of surface discontinuities which may occur.
One of these, called a "contact discontinuity," moves with the fluid.
It is present at the boundary between two kinds of fluid, and it may
also be generated within one fluid under certain circumstances. It is
characterized by the continuity of pressure and of normal velocity com-
ponent across it.

The other type of discontinuity, the shock, moves relative to the
fluid, changing the state of each element as it sweeps by. To see the
menner in which this occurs, it is sufficient to consider a relatively
simple case: The shock is an infinite flat plane separating two semi-
infinite regions in each of which the state is everywhere the same and
in which the material velocities are normal to the shock plane. The
results will be instantaneously appropriate for curved shocks with non-
constant adjacent states as long as the material speed is everywhere
normal to the shock. The reason is that in considering a shock to be
of zero thickness, the vicinity of a point on it can be examined "micro-
scopically”™ to a sufficient degree to give the vicinity of the point
the idealized conditions described.

" We use the notation in the diagram; the shock is moving to tﬁe

right and the fluid is more compressed [E

on the left. In general, the shock ﬁ: . shock

speed, v, is greater thaﬁ the material - L v (E
speed on either side. Also u_> u 3:
(for a shock traveling as pictured), P:

which follows from the fact that the
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shock is compressive. (We shall show in this chapter that all shocks
are compressive.) Four conditions exist which relate changes of these
variables across the shock. One of these is the equation of state.
The other three, called the Rankine-Hugoniot relaﬁions , are derived as
consequences of the three fundamental consérvation laws. It will Dbe

useful to examine several derivations of these relations.

Fundamental Derivation of the Shock Relations

1. Conservation of Mass. The distance per unit time that material
moves relative to the shock is (v - u+) on the right and (v - u_)on the
left. The mass per unit area of shock per unit time,m , which passes
into the shock from the right, is thus m = p+(v - u+). This must, how-
ever, be exactly the same as the mass per unit time which leaves the

shock to the le:f‘t;*:

m=p(v-u)=p(v-u) (1)

2. Conservation of Momentum. The momentum per unit area per unit
time passing into the shock from the right ism u 5 similarly, that
which leaves from the left is m u_ so that the change in momentum per
wnit time ism (u_ - u+). This must equal the force per unit area on
the system:

m(u -w)=p -p, (2)

3. Conservation of Energy. The energy change per unit area per

unit time ism (E_ - E+). This pmust be equal to the net rate of doing




INTEGRAL DERIVATION OF THE SHOCK RELATIONS

work on the region:

WZ(E_ - E+) =pu_-Dpu, (3)

These simple results will be extremely useful for exploring a num-
ber of interesting hydrodynamic situations. For convenience in handling

the shock relations, we introduce the notation for each field variable

Sy =¥, -V
+ -
W)
- _ 1
V=3 (W+ + W_)
where ¥ stands for any of the field variables. The following identity

occasionally will be useful:
(¥, ¥,) = ¥, 0¥, + V0¥, (5)

In terms of these symbols, the shock relations can be put into the form

m=vp - pu (6)
vop = 8(pu) (7)
mdu = dp (8)
m®E = 5(pu) (9)

Integral Derivation of the Shock Relations

In Chapter I, it was shown that the equations could be expressed
in integral form (I-26), (I-27). We now assume that the equations thus

written are valid even in the presence of a shock. A posteriori justi-

fication of this assumption will follow from the fact that the results

of the following analysis are correct.
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IV. SHOCKS

The line in the diagram is a
plot of shock position versus time,
with the shock moving in the posi-
tive x-direction. Draw a rectangle
about a segment of the curve in the

vicinity of a point of interest.

The rectangle is to be considered

SO narrow, in a direction normal

to the curve, that contributions
to an integral around the rectangle due to its ends will be negligible.
The rectangle cuts the shock curve at (x1,t1) and (x2,t2). The integral

equation for a path around the rectangle is thus (see page 30)

A(x, -x)-B(t,-t)+A(x -x)-B(t -1t)=0
(where higher order contributions dué to finite rectangle size have
been neglected). If, now, the rectangle is sufficiently short, then

(x2 - x.‘)/(t2 - t1) differs negligibly from the speed of the shock, V.

Thus, the result from the integral equation is

vOA - BB = O (10)

From the conservative Eulerian equations, (I-26) we obtain

vdp = 8(pu)
vo(pu) = 6(pu2 + p) (11)
vd(pE) = (pEu + pu)
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DISCUSSION OF SHOCK FORMATION

The first of these is identical with the previous result (7). It can be
shown that all three of them are reducible to the results obtained from
the fundamental derivation.

From the conservative Lagrangian equations, (1-27), we obtain

1
t —_) = -
v poﬁ(p) du
' —3
v poﬁu Bp
v'p BE = 3(pu)

where v' is the lagrangian shock speed (that is, the speed of the shock
relative to the unshocked material). The quantity v'p is just equal
o

tom, the mass per unit area per unit time passing across the shock.

Thus
1 )
5(=) = - &
m (p 193
Mdu = ®p & (12)
MSE = &(pu)

P

Through the Eulerian definition of m in (6), it can be shown that (11)
and (12) are equivalent. The fundamental derivation produced the first
equation of (11) and the second two of (12). This auxiliary integral
method of derivation produced the other forms shown, which will be

useful.

Discussion of Shock Formation

It was shown in Chapter III that the compressive motion of a pis-

ton is likely to cause a shock. Here we examine in more detail the
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IV. SHOCKS

basis for this pecﬁliar phenomenon. There are two processes which éon-
tribute to the formation of a shock. Consider, for example, the com-
pressive motion of a piston. In the pulse adjacent to the piston, the
fluid is moving towards the undisturbed fluid which is further away.
Signals from the piston, indicating its approach, are propagated with

sound speed relative to the moving material. Thus, relative to a fixed

reference frame, signals approach the pulse front faster than it moves
through the undisturbed fluid. These signals pile up, producing the
shock. The second process which also contributes to the shock forma-
tion is the heating of the pulse adjacent to the piston. This heating
also increases the sound speed over that in the undisturbed region.
Both of these proéesses are manifested mathematically by the non-
linear character of the differential equations. Thus, for example, in

the simple-wave equation of Chapter III,
Jol] o
o (o - o+ c) 55 - O

the nonlinearity arises from the presence in the parentheses of ¢ (pro-
ducing the first shock-forming process) and of c(o) (producing the
second shock-forming process). If we linearize the equation by putting
o = Go and c = co, the general solution is that of a propagating pulse

- whose shape does not change with time

o= F(x - cot)

However, the more general solution, as shown in Eq. (III-1k4), can lead

to shock formation.
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SHOCK REIATIONS FOR SPECIAL CASES

Usually, the formation of a shock makes the theoretical treatment
of a problem much more difficult. The shock is a moving boundary, along
which boundary conditions can be supplied, but whose motion with time is
not a priori known. In addition, the fluid may no longer be isentropic
(as will be shown later). As a result, analytical solutions in the pres-
ence of variable shocks are very difficult to obtain except in certain

special cases (see, for example, Chapter vI).

Shock Relations for Special Cases

Probably the three most useful of the general forms of the shock
2
relations (obtainable by putting E = I+ 1/2 u~ and eliminating mfrom

the shock relations) are

vdp = 8(pu)
(ep)(3 1) = - (Bu)” (13)
8I = - 56(15)

In particular, if the coordinate system is such that u = 0, then

v(e_ - p,) = pu_ (14)

(p_ -2 )(p_-0,) = p_p+u? (15)
P_+ D,

I_-1,-+ EET_EI_ (D_ - D+) (16)

In the special case that the gas is polytropic, these equations
can be yewritten in a number of convenient forms. Let c_ and c+ be the

sound speeds behind and ahead of the shock, respectively, and define
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M=—
c
+
u-
Us=s—
c
+
p-
Z=—
oy
P
P=—
L
u
M= —
c

Relative to the gas ahead of the shock, M and U are, respectively, the
Mach numbers of the shock and of a piston producing it. M' is the Mach
number for the flow behind the shock. It follows from the shock rela-

tions that U, Z, P, and M' are all functions of M alone. Thus

2
U=H (17)

Ze i 22/M2) (18)

P=1+——————7231(M2-1) ' (19)
e(M2 - 1)

M = ~(20)

M/[y -1+ (M) (2 -y + 1)

or, conversely,

M = Y + 1 u Y 4+ 1 e
=Lg—vu+ 1+ (F—0) (21)




SHOCK RELATIONS FOR SPECIAL CASES

2 27 (
Ty+s1-(y-1)z

z2)

- r+1 (p .
M= 1+ g (p-1) (23)

2
W = -8 + (y

6y + 1)(M')° - by + 1)M'\ﬂ + [(y + 1)/1l]2(M')2 (2%)
| by(y - 1)) - 8

If the shock is very strong (that is, the shock speed is large

compared with the sound speed ahead) then M = » and

2
v + 1

g,
M

£ -
2

M y + 1

M! - 2
(7 - 1)

Thus, for an infinite-strength shock,
1. The shock speed is determined by the gas speed behind. If
the shock is formed by a piston moving with uniform speed, then the ma-

terial speed behind the shock equals the piston speed and

2. The compression produced by the shock is independent of the
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shock speed and depends only on the nature of the gas. Notice from (18)
that the greatest possible compression that can be produced by a shock
in a polytropic gas is (y + 1)/(y - 1). For air, for example, y = 1.4
so that the greatest possible shock compression in air is 6.

3. The maximum Mach number for the flow behind a shock moving into
a polytropic gas at}rest is a function of the value of y only. For air,
this limit is 1.89.

The relations for an infinite strength shock can be summarized in

more convenient forms

f: X+ 1
Py 7y =
ve2lily
[
I=2%u (25)

R ETCIEND

Note from the third of these that there is equal partition between inter-
nal and kinetic energy behind an infinite strength shock. Note also that
for most real gases, which often can be considered polytropic with » < 2,

the material speed behind the infinite stre :h shock is greater than the

sound speed.




ENTROPY CHANGE ACROSS A SHOCK

Entropy Change Across a Shock

The entropy change across a shock in a polytropic gas is, according
to (II-5),

RFORTS)

where b is the specific heat at constant volume. Combining with the

general shock relations, we may put this in the form

' 1 -R - R
5_-8, = [ (1 -7 7 R> -ln (\1 + 71 — R> -y 1n R] (26)

If R = 1 (no density change across the shock), then S_ = S+. For R only

slightly different from 1, then (26) may be expanded to give

;2
L oy(y” - 1) 3

where higher power terms in (R - 1) have been dropped.

The Second Law of Thermodynamics states that entropy increases or
is constant in any closed macréscrOpic system. Thus, when a shock is
formed, R must be greater than 1. Furthemore, for any sbock, R must
always be greater than 1 since, to change to R < 1, the region of valid-
ity of (27) must be approached. This means that shocks must always be
compressive in the polytropic gas discussed here. A more general argu-
ment along similar lines can be used to prove that all shocks are

compressive.
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IV. SHOCKS

Hugoniot Relation

There are two extreme ways (with no heat flow) in which a fluid can
be compressed monotonically: impulsively or very slowly. In the latter
case, the fluid remains isentropic, and the adiabatic equation of state

holds. Alternately, in the case of shocks, we have seen (16) that

P +Dp
- + 1 1
I -1 =" (- _ __£>
- + 2 <;+ p_

This, together with the equation of state in the form I = I(p,p), gives
a relation, called the Hugoniot relation, between pressure and density

for shock compression.

A plot of the adiabatic and
Hugoniot pressure-density relations
for a material shows that the "adia-
bat" lies below the "Hugoniote" This
is beéause, in general, a shock com-
bPression increases the internal energy
nmore than an adiabatic compression,
and further, for a fixed compression,

pressure increases with internal

energy.

(po’po) P For any monotonic compression
of a fluid, its state will always be

such that its pressure and density

determine a point which lies between




HUGONIOT REIATION

the A and H curves. ; Any subsequent expansion of an element of the fluid
will be adiabatic. In general, the slope of the adiabat at any point

is less than the slope of the Hugoniot. As a result, it is impossible,
in the absence of heat flow, for a fluid to be changed in such a way
that its (p,p) point will lie directly to the right of any point where

it has previously been. This irreversible trend of migration of (p,p)
points to the left.is identically equivalent to the t;end of irreversibly

increasing entropy.
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CHAPTER V

DIMENSIONALITY AND SIMILARITY

Scaling

Consider the problem of determining the flow field about an air-
plane. We assume for now that the air can be treated as a simple gas
(i.e., the effects of viscosity and heat conduction can be neglected.)
Even so, the analytical calculation would be extremely difficult, and
an experimental approach is required. A model is built and tested in a
wind tunnel. The question then arises: What bearing do the test re-
sults have on the nature of flow aruund the real airplane? Another
question of interest is: Can the results of a test at the extreme of
wind~tunnel capabilities be extended to give information in the fegion
beyond those capabilities? Considerable effort has been expended to
answer these questions, and much of many aerodynamic textbooks is de-

voted to related discussions. We shall discuss the matter only slightly.

Consider the Eulerian equations in the form




SCALING
p g% + p(TVI = - ity
Now let the entire system be rescaled such that
P = PP
P =pp

I-1IT1
o

where the subscript o here indicates a constant, dimensionless scaling

factor. Then the equations become

() (e <u-v>u=-<i)vP
GERCOLEE

o I S pul pu
0 0 I 00 0 - _ 0 O ~>
<to>°a¥+< % )e 91 - <xo>PV“

These equations will be identically the same as the original ones, pro-

vided that
o _ % Lo
u2 t —1;-2—
Poo 0o o)
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In addition, the sound speed is defined by c2 = (Bp/ap)s so that, with

c —c.c, we also have

2
P X
U§=I0=——o-=—%=c2 (1)
Po to °

Thus, in the case of the airplane and its model, results of tests can be
applied to the full scale provided that the ratio of flow speed to sound
speed is the same in both cases. This important ratio is called the Mach
number of the flow. The requirements Io = po/po = ci are certainly sat-
isfied for a polytropic gas. The relation xo/to =c, gives the time
scale for occurrences in texms of the scaling of linear dimensions. Thus,
if the sound speed is the same for the airplane and its model and if the
airplane is, say, 5 times as long, then it takes 5 times as much time for
a similar change in flow pattern to take place.

When the gas is viscous and conducting of heat, additional param-

eters result from scaling arguments. These are discussed in Chapter VIII.

Similarity
In some cases of interest, a flow field may retain geometric simi-
larity to itself as it develops in time. This is the case in one dimen-

sion, for instance, if all features of the flow field are functions of

x/t alone. The example of piston withdrawal in Chapter III [see (I1I-13)]

is an illustration.




SIMITARITY

Consider the one-dimensional equations in the form

du du
ead--k

where A is any function of entropy alone; for a polytropic gas, we take
A= l%

P

We now assume that there exists a function y(x,t) such that p, u, and

p are functions of y anly. Then

du__, O

3T St
3

&

and similarly for p and p. Here a prime denotes differentiation with

respect to y. Note that this is really a part of the more general

transformation
y = y(x,t)
z =%

after which we assume independence from z, sO that all features of the
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V. DIMENSIONALITY AND SIMIIARITY

flow field are independent of time in the transformed coordinate system.
Note that the transformed coordinate system moves with respect to the

original one with a velocity

ve - Y, ai) | (2)

Putting these assumptions into the original equations, we get expressions

which reduce to

pu'(u - v) = - p'

(3)

1
[
2

p' (u - v)

At (u-v)=0

Thus, to be consistent with the original assumptions, v must be a func-

tion of y only. This is equivalent to the condition

y = £lx - vW(3)t] (%)

where f is an arbitrary function of its argument. Thus, in this general-
ized similarity transformation, f and v can be chosen as arbitrary func-
tions and the eéuation for y(x,t) can be obtained.

The special case in which v =u is trivial. It is an equilibrium
solution in which all characteristics of an element of fluid are con-

stant. It can be written in the form

A(y) = arbitrary function
u(y) = constant
p(y) = constant
o(y) = arbitrary function

-88-




SIMILARITY

and I(y) is related to p(y) in such a way that the pressure is everywhere
the same.

It v #u, then
A = constant
2
(pu')” = p'p’

Thus p is a function of p only, and we may use the definition (111-2)

do = cdp
p
to obtain
du = % do
or
u=u *o0 (5)
o

where u, is a fixed constant. DNote that this is the same result as ob-
tained from the theory of characteristics except that now there is not
yet any specitication of the path along which u * o is constant. We put

(5) into (3) to obtain

+ po'(uo o -v) =~ cps’
The case 0' = O is again trivial; in order that o' # 0, it is necessary
that \
+ - + =
u, g-v*ec=0
or‘
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V. DIMENSIONALITY AND SIMILARITY

Thus the transformed coordinate system must everywhere move with the
velocity of the characteristic lines.

The problem of the constant-speed retracting piston of Chapter III
is now solved with ease. Put v = a(x/t) (where a = constant) and, for a

polytropic gas, 0 = 2¢/(y - 1). Then

X
a==uxc
t

=
1
f+
1+

Application of approﬁriate boundary conditions then yields the solution.
Various other types of similarity solutions are applicable to
special cases. Sometimes considerable ingenuity is required to find one

which satisfies the desired initial and boundary conditions. In many
cases, no such solution has yet been found. Chapter VI shows the appli-

cation of another type of similarity assumption to the problem of a de-

caying shock.




CHAPTER VI

DECAY OF A SHOCK PULSE

General Discussion

We have seen in previous chapters how the compressive motion of a
piston can produce‘a shock. In most practical situations, however, the
piston pushes for only a finite time. When it stops, the fluid at first
continues to rush away and a rarefaction is formed. In general, the
rarefaction will overtake the shock and modify it; the shock will decay.
The sequence is shown qualitatively in the following successive plots of

pressure as a function of distance.

OOMNNNN

NN

_J
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NANNN
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VI. DECAY OF A SHOCK PULSE

Most problems concerning shock decay are very difficult to solve.
We shall consider two special cases. In the first one, the shock is
formed by the very short impulsive motion of a piston adjacent to a
cold polytropic gas. In the second one, a weak shock decays under the

action of an overtaking simple rarefaction.

Decay of a Very Strong, Impulsively-Formed Shock Pulse

In this section we discuss a special case of a more general result
as summarized from the Russian literature by Hayes and Probstein.% Their
calculations were performed in Eulerian coordinates; we have used
Lagrangian coordinates and, in aﬁdition, have tried to show how the var-
ious similarity assumptions arise from one basic, initial assumption.

Because we shall refer to both Eulerian and Lagrangian coordinates,
we shall carefully keep track of them by the designations x and X s Te-
spectively (at t = 0, x = xo). The problem is described as follows.
Before t = 0, the polytropic gas is cold and at rest (thus it has zero
sound speed). At t = 0, an instantaneous impulse is applied by a pis-
ton at x = 0; thereafter the piston remains fixed at x = 0 so that the
amounts of energy and mass in the region for x > 0 remain constant.

A shock propagates away from the piston; its position is xs which is a

Tunction of ‘time, and its velocity is

*
W. D. Hayes and R. F. Probstein, "Hypersonic Flow Theory," Academic
Press, Inc., New York, 1999, pp. 52 ff.
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DECAY OF A VERY STRONG, IMPULSIVELY-FORMED SHOCK PULSE

The boundary conditions at the shock are

- x+1
Ps 7y -1 Po
u_ = 2 v
5 y + 1
2
b .= oV

s v+ 1%

Thus, the density is forever constant at the shock, while the pressure
and material speed vary with the shock speed.

We work with the Lagrangian equations of motion

du
d _ o
3t 77 oo 3%

d
35(;%)”

The basic assumption, which will be given a posteriori Justifica-~

tion, is that there is a generalized similarity solution in which the

density is a function of xo/xs only. That is,

o) = o 2(3) (1)

where

XION

(2)

It

y

w

From this assumption only, there result the other features of the
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VI. DECAY OF A SHOCK PULSE

similarity solution; they are consequences, not additional assumptions.

The boundary condition on f(y) is that £(1) = 1.

Now
x dx vx
g% _ _ o s _ (o)
T T2t T T T2
Xs Xs

z-1
X X

o s
Thus

dp _ VXoPs
S&--—>%—°

X

s

ap_psl

xTx% *

where the prime denotes differeﬂtiation with respect to y. We may now

consider u(xb,t) to be, instead, a function of y and t. Then

du _ 1 du
R

and the mass equation becomes

P
S - Ju
vyt pof5§

Thus it is necessary that the dependence of u(y,t) on time must come in

having u directly proportional to v. We write

ve(y)

2
7 + 1




DECAY OF A VERY STRONG, IMPULSIVELY-FORMED SHOCK PULSE

so that g(1) = 1, and the mass equation becomes

'..____g_2|
yf' = Y g (3)

Next, consider the momentum equation. By a similar process, it beccmes

2 a2\,
y+ 1 Po \Fs & & ye /=

Thus, p, considered as a function of y and t, must be written in the

form

p(y,t) = X %%(function of y) + va(function of y)

But

v2
7 + 1 Po

p(1,t) =

Thus xs(dv/dt) must be identically proportional to v2, and it follows
that we can write

. ‘
x, = Kt (&)

where K and n are arbitrary constants. (This comes from integrating

2 2
x d xs _n- 1 <?x§>
s dt2 n at

and applying the boundary condition that at t = O, X, = 0.) Thus, we

the equation

put

2
7y + 1

2
p = PV h(y)
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VI. DECAY QF A SHOCK PULSE

so that h(1) = 1. As a result, the momentum equation has become

1 -
h' = yg' + 2 g (5)

Finally, there is the entropy equation which states that

)
&5(‘:;)”

Thus the quantity

2
v h(y)
£7{y)

~

must be independent of time. Because v2 is proportional to t2n-2’ we

see that

h y(2n-2)/n
f7

Since h(1) = £(1) = 1, the constant of proportionality is 1, and
- f7y(2n-2)/n (6)

The over-all conservation laws give further information concerning

the problem. Thus, for over-all conservation of mass, we require

X
f .
= X
pdx [e]

o s

This, however, is satisfied identically, since

X X
R -
o PIX =J, podxo
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The momentum equation gives more valuable results. We require

X

a S
EE&/; pu dx = p(0)

where p(0) is the pressure at the point x = 0, that is, at the piston.

Then
S
-a% uidx = E(-gl
(o] o ID0
or
1
2n - 1
= f gdy = h(0) (7)
(o]

From this, we may distinguish several classes of solutions. Ifn = 1/2,
then h(0) = 0. If n # 1/2, then h(0) # 0, or else if h(0) = O, then g
must change sign in the interval or identically vanish. We shall see
below that n = 2/3 and thus conclude that h(0) # O is required.

The energy conservation eguation states that

<;7%—T + 5 pué> dx = Eq

where ET is the constant total energy of the system. This can be put

into the form

J< g2>dy (7+1)2E (8)

2x v Po

Thus xs v2 must be constant in time. Since
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xsv2 = I{3n2t3n'2

it follows that n = 2/3.

In summary, with n = 2/3, we now have the three equations

h'=yg' +4g ]

yi' = (9)

R

vh = £7 )

together with the conditions h(1) = £(1) = g(1) = 1, and the expectation
that h(0) # 0, g(0) = O, and that in the interval 0 <y < 1 the depen-
dent variables are all positive., If these conditions can be fulfilled,
then the similarity assumption may be reasonable. It ma& be noted that
£(0) = 0, so that the temperature at the origin must be infinite in or-
der that the pressure not vanish. This, then,adds another physical con-
dition to the limit of applicability.

Once a solution has been obtained, then the energy integral can be

evaluated and K determined as a function of ET

f< f)ay 9(’”)ET (10)

The left side is a function of 7 only, so that

1/3

<;;> (function of 7) ' (11)

One useful relationship which may be obtained without a complete
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solution is that between the Eulerian and lagrangian position variables.

We use the relation

pdx = podxo

from which
p dx
o}
dx = —2 O
[¢]
s XS

-(z53) C(S:T

x=L=1y ‘jpy —%17
Y +1 7s fly
o)
Now
yf' _ 2g'
f2 7y -1
so that

J
f yE 4y - 28(y)
o fE 7 =1

Integrate this by parts and combine with the equation for x to obtain

o bt 0 ) (2

This shows that x/xs is a function of xo/xs only, so that h(y), f£(y),
and g(y) could just as well have been written as functions of x/xs.
If the solution is obtained in one coordinate system, it can thus be

transformed to the other.
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The process of solving the equations can be simplified by using

the fact that there must be no energy flux across any similarity line,

’

<§“¥'T + % pu2> <P - usim> + pu =0 (13)

where Uoim is the velocity of a similarity line at fixed y. From the

Thus

relationship between Eulerian and Lagrangian coordinates, we may see

that

_y -1 (2@ z)
Ysim = ¥ + 1 v(y -1 f.f

so that the desired relation is

(h + fgg)y = 2hgf ; (1%)

This may be used in place of any of the differential relations.

Hayes and Probstein display the complicated solution to the prob-
lem and show graphs of the results (as a function of the Eulerian simi-
larity variable) for y = 1l.4k. We here derive instead a simple approxi-
mate solution which shows the qualitative features and which satisfies

the boundary conditions. We start by trying as a solution

h(y) = h(0) + Ay"
gly) = y"

where m and n are to be determined. To satisfy h(1) = 1, A = 1 - h(0).
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These satisfy the equation which does not contain f provided that

1

PEA - AN
2o
“2(1 - A

The equation between g and f can also be satisfied provided that

1-m
y

2m

=

Yy +

(y - 1)1 -m

)(l - Yl

Finally, however, there is a relation between h and f which cannot be

satisfied, even to lowest order in y unless 7 = 1 (in which case it can

be satisfied identically). JIn order that the lowest order exponents be

the same, we choose (L1 - m) = 1. As a result, there follows the approxi-

mate solution

gly) = S 707
1
n(y) = 5(5;-:—1)[7 + (3
A}/y
f(y) = [yh(y)}

This predicts that

n(0) = 2(277- 1)

whieh is surprisingly accurate.

y - 2)y(27-1)/7]

The exact result is

~101- -
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h(0) = (?92/5 /

2y - 1

Y+ 1

>( 57-4)/3(7-2)

y h(0) exact [h(0O) approximate
1 0.5 0.5
2 0,323k 0.3333
® 0.1984 0.25
*0 ‘ A comparison is shown of the
APPROXIMATE SOLUTION approximate and exact solutions for
7 g(y) for the case y = 5/3. For
// s
905 L e sorumon ] smaller values of 7, the agreement
/
/ .
7 is even better, and in the limit
Vi
vy - 1 the approximate solution be-

o] 0.5 10

s comes exactly correct.

It is an important feature of the solution that the shock pressure

2/3

decreases in proportion to t in this constant-energy case.

Interaction of a Rarefaction Overtaking a Weak Shock

Consider, first, a shock moving into a polytropic gas which is at
rest but which has sound speed C . We refer to equations (Iv-17) and

(Iv-18), put into the form

Ui (M - 1)

c
+

"+ 1M




INTERACTION OF A RAREFACTION OVERTAKING A WEAK SHOCK

C

Sests Jir-1s @) e -y v 1)
+

We shall need these in the weak-shock limit; let M =1 + ¢, where € << 1;

then
u._ )-I-e A
E: Ty 1
\ (18)
c
- Y -
-é-— = 1 + 2€<’ " l)
+

This shock is followed by a simple rarefaction which arises at
x = 0, t = 0. Using the method of Chapter III, we find that the rarefac-

tion can be characterized by

2 [x
u'7+l<35>'x

_ry-1(x
¢= 7y + 1 (;) + K

within the rarefaction region. The constant K is related to the shock

conditions at the instant of collision by

+1 7+ 1 <Jat collision

The question now arises: Can the rarefaction solution be joined identi-
cally to that of the shock? In general, the answer is no. Only in the

special case that the shock 1s weak can the joining be made:
2 s _ Ye
y + 1 <;%> -Kk=ce o7 ¥>
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1-1("s = 7 -1
7+1C0)+K“°+[1+2€(7+1>}

where X, is the shock position. These two relations must be identically

the same, if the Joining is correct; with the general shock relations
this cannot be accomplished; in this special case it can, as follows.

The two equations are written

X ry+ 1
S _p¢c =3 K

t +

x
s _r+1 _
t"2€°+‘7-1<°+ )

These are the same provided that

2c
+

Yy + 1

K =

In the weak-shock limit this requirement is satisfied. Thus the two

equations become

:s
— - c =
I 2¢ c+

Now ¢ =M = 1 so that c,E=V-c. Also,




INTERACTION OF A RAREFACTION OVERTAKING A WEAK SHOCK

»

ax
-3
at

S—
2 -Tb-——c+

This has the solution
x, =ct +NVE (19)

in which § is a constant. Thus, the shock speed asymptotically approaches

sound speed ahead of it:

v = C +——&—"' (20)

+ 5 J;c

Note that this solution predicts infinite shock speed at t = 0, in con-
tradiction to the weak-shock assumption. Thus the solution is valid only
for late times. Note also the prediction of shock-pressure decay as

t-T/Z compared to t‘2/3 in the preceding section.

-105-




CHAPTER VII

INVERTED HYDRODYNAMIC EQUATIONS

The Transformation

Even for a simple, isentropic gas, the hydrodynamic equations are
difficult to handle in complete generality; The complications arise
mainly from nonlinearity of the equations. One means of circumventing
the difficulty is by the method discussed in this chapter (sometimes
called the "speedgraph"” method). The hodograph transformation for
steady flow is part of a very similar method.

We start with the equations in the form used in Chapter III (see

III-3); the gas is assumed to be simple and isentropic.

du du o0 _
pra i i i 0

(1)
o0 o0

3t + u 3= + cC g% = 0
To remove the nonlinearity these are transformed to a set of equations
in which the dependent variables are x and t and the independent var-
iables are u ;nd g; the resuiting equations are then linéar and homo-
geneous, and thus amenable to treatment by more familiar methods.

We introduce the shorthand notation x = (ox/d0) , ete.,

u=constant
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in which partial derivatives of x or t with respect to u or ¢ are taken
with considerstion of x and t being functions of u and 0, and vice versa.

For example:
dx = x 4o + x_du
g u
so that, with t held constant,

l1=%x0 + XU
g x u x

or with x held constant,

0= xadt + xuut

Two more independent relations of this kind can be derived; we write

them in the form

0 xo0 +to
u X ut

(@)
#t

u

tto + u X

X0

These four relations can be solved for derivatives of u and O:

s
t = Det
t
u:—__q_—
X Det
X, > (2)
% = ~ Det
t
% = * Det )

where
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Det = xctu - xutU (3)

Validity of the transformation requires Det f 0.

With these transformation equations, the equations in (1) become

NN ()
ox ot ot (5)

N iR °%

Since ¢ is a function of ¢ only, these equations are linear and
homogeneous in thneir dependent variables. From these two equations,

x can be eliminated

e (6)

A similar equation for x can also be obtained, but it is not as concise.
The amount of difficulty involved in solving (6) depends upon the nature
of the function (1/c)[ 1 + (dec/do)], which, in turn, depends upon the

form of the equation of state. For a polytropic gas, for example,

3% _82t=<;+1>;at

Even simpler is the equation resulting from the equation of state

p=a-B | (8)

where ¢ and B are constants. [Such an equation of state may be useful

if a very small range of densities is involved; then (8) may fit the




THE TRANSFORMATTION

true equation of state sufficiently well over the range of interest.]

The form of (6) with the relation (8) is

2%t 621',—0
—-—3=
du oo

the simple wave equation, which has the general solution
t = 11(u + 0) + 12(u - 0)

where 11 and !2 are arbitrary functions of their arguments (arbitrary,
that is, except for the restrictions imposed by continuity and nonvanisn-
ing of the transformation determinant). The corresponding solution for
x 18 u+0

u=-o
[ e+ [ (e x0 y0a

where K and the lower limits of the integrations are arbitrary constants.

With this solution (3) becomes
- - 1t
Det = -ke !112

which must not vanish if the transformation is to be valid.

Returning to (7), we make the substitution

o _en + 1
LA~ |

Then, for integer n > 0, the most general solution is

-G )T G- 2
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where 11 and 12 are arbitrary functions of their arguments. The special
cases of a monatomic gas (y = 5/3, n = 2) and a diatomic gas (y = 7/3,
n = 3) are covered by this solution. The fictitious case, y = 3 (n = 1)

has a particularly simple solution
t =2 (£, (u+0) + 2. (u -~ 0)] (10)
o "1 2

In this special case, ¢ = 0.
The solution for x follows from (4) and (5), either directly or
through the following transformation:
y=x-ut

2z =0t
Then, for a polytropic gas,

F--2 8

> - 19 Y -
i 5 = 55 + § (?'E“%)

For y = 3, these become particularly simple, and the solution is (lO)
together with

y = —11(u + 0) + 12(u - o)

or

X = ut - 11(u + 0) + 12(u -0) . . (11)

A useful form of these general solutions, which follows directly from

(10) and (11), is




EXAMPLE: EXPANSION INTO A VACUUM

Flx - (u+ o)t} - (12)

Glx - (u - o)t] (13)

u -+ 0

u -0

Here F and G are arbitrary functions of their arguments. [It should be
noted that (12) and (13) can be derived simply and directly from the origi-
nal equations as a direct consequence of the fact that for y = 3, o and ¢
aie identically equal.* A directly analogous derivation for any other value
of y is not possible.]

Example: Expansion into a Vacuum

Initially the gas is at rest; for x < 0, there is vacuum, for X >0

there is gas. Define

0 x<0 ]
H(x) =

1 x> 0 L (14)
0<H(x)<1 x=0 |

and let o be a fixed constant. Then, at t =0,
o = a H(x)
(15)

u = a[H(x) - 1]

The form of u follows from the fact that the motion is that of a simple

weve in which u - o has everywhere the same value., Combining with the

* For y = 3, the one-8imensional Bulerian equations are

+

%+u?—x=-c%§,%+ug§=—ug, or%(utu)+(uto)§-—x(u-d)=0.

The general solution of this pair is seen tobeu o = F+[x - (u £ o)t].
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solution (12) and (13), we get

u+0=0u {2H[x - (u+ o)t] - l}
u=-0= -

or
u+0> for u + 0 = @

]

for u + o o

u+ 0= for - Su+o <a

<
+
Q
A
S S S ]

which seems like a strange way to express the solution, but this can be

transformed to the equivalent, more familiar form

oM

for o< r-<a

Q
]

for the region of the rarefaction wave. In particular, at x/t = -,
u = -, the "escape speed."”

It is also strange that the final solution depends upon the nature
of the‘velocity profile in the vacuum (15). Had we taken u =0 at t = O,
the fihal result would have been meaningless.

Considerable additional discussion of this method has been given by

* *¥ HXH
R. von Mises , by Courant and Friedrichs, and by Landau and Lifshitz.

*R. von Mises, "Mathematical Theory of Compressible Fluid Flow," Academic
Press, Inc., New York, 1958. '

**Richard Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,"
Interscience Publishing Company, New York, 1948, pp. 88-91; pp. 191-197.

*¥**L, D. Landau and E. M. Lifshitz, "Fluid Mechanies" Pergamon Press Ltd.,
London; Addison-Wesley Publishing Company, Inc., Reading, Mass., 1959,

pp. 386-392.
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CHAPTER VIII

THEORY OF VISCOSITY

General Description

Viscosity in fluids may arise from two main sources which are quite
different but may be approximated by the same mathematical form:

1. Fluids which are "thick" and "sticky" derive their viscosity
from their strong cohesion, or intermolecular attraction. Shear motion is
accomplished by doing work to break these attractive bonds. Re-forming
of the bonds leaves the molecules vibrationally excited, equivalent to
conversion of energy to heat. The greater the heating, the more easily
the bonds are broken, so that such viscosity decreases with temperature.

2. In gases, the intermolecular forces are of short range compared
to separation, and the individual molecules move with much greater veloci-
ties than the local average of many of them (this average being the "local
fluid velocity"). The molecules diffuse about among each other (in viola-
tion of our early assumption that elements remain adjacent). Thus, for
example, a boundary between helium and hydrogen which is initially sharp
will gradually be replaced by a widening zone of mixture. Likewise, the

boundary between a cold region (average particle speed small) and a hot
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one (average particle speed large) will be replaced by a widening warm
zone as the fast moving molecules diffuse into the slower ones. In like
manner, if there is a slip plahe in the gas (that is, a discontinuity
in mean molecular velocity), then the effect of diffusion will produce
an apparent drag. This is because the molecules moving each way acroés
the slip plane carry, on the average, the»mean velocity of the side of
origin, and mix this, through collisions, with the mean velocity from
the other side. This is gaseous viscosity. Since the random molecular
velocities (and thus the diffusion rates) increase with temperature,
the viscosity and heat conduction will increase with temperature for
this type of proceés.

The two viscosities are thus considerably different In their de~
pendence on temperature. They also differ in that heat conduction is
directly associated with the second type but arises (if even signifi-
cant) from quite different processes in the first.

The usual concept of viscosity is that it produces a drag along a
shear plane, but 1t is easily seen for the gaseous type how viscosity
can affect one-dimensional motion. If there is a velocity gradiernt
parallel to the velocity, then molecular diffusion can tend to decrease
the gradient in Just the same way as when the gradient is perpendicular
to the velocity. The fact that the velocity vector can diffuse both

parallel and perpendicular to itself leads us to suspect that a precise

mathematical formulation will involve the use of tensors.




FORMULATION FROM THE DIFFUSION VIEWPOINT

Formulation from the Diffusion Viewpoint

To accomplish the formulation for gaseous viscosity, we consider
first the momentum equation in conservative form. In true one-dimensional

motion, the equation is (I-24)

%%5+§;(ou2+p)=0

The term in parentheses is the momentum flux past a point fixed in space;
the first part is the transport due to fluid motion, the second is that
produced by inter-element forces. If there is a gradient in fluid veloc-
ity (i.e., in mean local molecular velocity), then we expect an additional
flux term, F, vhich depends upon the size of the gradient. We expand

the flux in a Maclaurin series:
ou . Ou
F=F(5) =F0) 5 F'(0) + -

The flux depends also upon such quantities as temperature (and so there-
fore do the expansion coefficients). There certainly will be no viscous
flux if ou/dx = 0; also, for many situations only the lowest contribut-

ing terms in the expansion are required. Thus, we write

du
F=-¥x

and the momentum equation becomes

%ﬁ?-+ ax(pu2 + P - H g%) =0 (1)

The coefficient of viscosity is Hoe Note that the viscous term can be
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considered a pressure modification.

In three dimensions, the momentum equation is (I-5)

dpu ) _
3-1;—+Vo(puu + % =0

To avoid the awkward double vector, this is written in index notation

opu

_§}'+§%(puiu.j) *%:Pc'f ° @

The summation convention is here employed; any term in which an index

appears twice is to be summed over that index:

323 (puiuj) means ji 323 (puiuj)
J=1

The three components are Cartesian, but our final results can be trans-

formed to any desired coordinate system. It is convenient to introduce

the symbol 8 , defined by & , = O for i # J; 8, =1fori=J. Then

J ij J

(2). can be put into the form

Bpui d . :

el 5% [puju, + 08, ,1 =0 (3)
The bracket term is again a flux of momentum. The first part, arising
from fluid transport past the reference point, signifies the rate of
transport of j-direction momentum in the i direction. Likewise, the
viscous flux, Fij’ must be a tensor whose components denote the réte of

diffusion of J-component momentum in direction 1i.

The flux tensor must be symmetric. This can be demonstrated by

-116-




FORMULATION FROM THE DIFFUSION VIEWPOINT

the following simple example. Consider a small cube of fluid with sides
parallel to the coordinate axes. Then ny is the x-direction momentum
per unit area per unit time which enters the face normal to the y axis
closest to the Qrigin. This contributes to the cube a rate of increase
of z-directed angular momentum about the cube center of (stxy)(s/2)
where s is the cube-side length. Through the other face normal to the
y axis there likewisc escapes x-direction momentum at the rate per unit
area ny, and this likewise adds angular momentum in the same direction
as that through the other face, the total angular momentum per unit time
passing through the y-direction faces thus being sin&. In similar
manner, the angular momentum rate in this same angular direction passing
through the x-direction faces is - sigyx' Now the moment of inertia of
the cube is 1/6 (psj)s2 so that the raté of change of the angular ve-

A

locity w is given by

% ) s & = sa(F

-F )
xy X

Since & must remain finite as s -0, it follows that ny = Fyxo The

same can be demonstrated in like manner for the other component pairs.
The viscous flux of momentum is again expected to vanish when there

are no velocity gradients; we keep only first order terms in the expan-

sion in powers of the gradients. Further Fij»must depend only upon sym-

metric combinations of these gradients. These symmetric combinations

(called the "rates of strain") are

du, Ou
_ i
=, T (4
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Besides being symmetric{ the form of Fij is further restricted by
the requirement that the equations must have the same form no matter
what may be the assignment 6f_x, y and z to i and j. (More precisely,
the viscous flux must be a tensor.) As a result, Fij must be related
to eij by a scalar function of proportionality. In additiqn, it may also be
related to 813 by a scalar function of proportionality provided one can be
found which vanishes with the rates of strain. Such can be tound to be €k

and, in conventional nomenclature, we finally write the flux tensor

ue (5)

A 13

1

Fi3= "2 ™% By -

Here p and A are scalar functions of position, termed, respectively, the
*

first and second coefficients of viscosity. The generalized momentum

equation has thus become

_E’E_+3>a_c_[puiuj+(p'%>\ekk) 513 -ueiJ]=0 (6)

Notice with regard to scaling of this equation that if two flows
are to be related by scaling, then A and p must be proportionally
changed, and the "Reynolds number" scaling factor(pouoxo)/uo must be
unity (i.e., the Reynolds number, Re = pux/u, must be the same). These
conditions are in addition to those of Chapter V.

From a mathematical point of view, the combined effect of the

¥See, however, W. H. Liepmann and A. Roshko, "Elements of Gasdynamics,"
John Wiley and Sons, Inc., New York, p. 337 in which 3N + 2 is termed
the second coefficient of viscosity. The reason for this choice is
that in many common situations 3\ + 2u = 0.
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scalar pressure and the diffusion flux tensor is the same as_that of a

generalized stress tensor

1
Py = - (@ - g By ¥ Heyy 0

which is interpreted as composed of the components of normal and tangen-
tial force per unit area on Cartesian planes within the fluid. The in-
terpretation is clearly artificial, but nevertheless useful. Most dis-
cussions of viscosity use this stress-tensor concept almost exclusively,
obscuring the true origin of viscosity.

The negative average of the three normal pressures at a point is

called the total pressure, Pp:
ou
1 _ 2 i

pT_

The conservation of mass equation, which is not affected by the general-
jzations of this chapter, states that auifaxi = =~ (1/p) (apsdt), so that
the contribution to total préssure due to the fluid motion is propor-
tional to the compression rate of the fluid. It has been argued that
this additional pressure is fictitious and should not be present, so
that 7 + 2/5 p = O, Many authors have treated flow problems using this
assumption, but we shall keep the pwo coefficients independent in the
discussions that follow. The second term in (8) is called the "dilata-
tion pressure." |

Note that for an incompressible fluid (for which V'@ = 0) "second

viscosity" plays no role, since the coefficient of A vanishes identically.
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From (6) many specialized forms may be derived which are useful.
Some of these are discussed in Chapter IX, in examples of simple viscous
flows. Equation (6) in full generality can be transformed to vector
notation

—)
p%‘%: pE - Vp + VOAVD) + 2(VeuV) T+ VX (L VX T)

where E’is the body acceleration. Most of the terms can be verified by
inspection of components; the last two require some straightforward re-
arrangement for verification. Transformation to various curvilinear co-
ordinate systems follows easily from the vector form. If A and M are

both constants (a useful approximation for many problems), then

—)
&
P =e€-Vp+ (N+p) V (VD) + w(ve9) T

The Energy Equation

It is instructive to examine closely the derivation of the energy
equation when one hasia. generalized stres_s tensor, p 15° We use a method
which is much like that of Chapter I, but° carried out with slightly more
elega.nce.* Consider a closed surface moving with the fluid

Let

w

1 rate at which work is being done on the fluid

i

within by forces at the surface

W, = rate at which work is being done on the fluid

within by body forces

#The derivation is essentially an elaboration of that presented in
L. Howarth, ed., "Modern Developments in Fluid Dynamics - High Speed
Flow," pp. 52-55, Clarendon Press, .Oxford, 1953.




THE ENERGY EQUATION

Q = rate at which heat is conducted across the surface
into the fluid within

K = the total kinetic energy within

4T = element of volume

The rest of the symbols are as used before.

Conservation of energy then requires
dK d _
&+ 55\/; Idr =W, + W, + Q . (9)

where the integral is over the volume; surface integrals will be over
the surface.
Consider now an element of area, da, on the surface. Let its

outward unit normal vector be n Then n

. da is the total force on
J P13

the area in the i direction. This, multiplied by the velocity compon-
ent in the i direction, gives the total flux in that direction, and the

sum of these gives the total work flux across the element of area:

njgijuida. Thus

W1 =faniJuide.
which, by the divergence theorem, becomes
W -fa (p, ,u,)dr
1 B'x; i34

Tuie way be transformed as follows:

9y ' a“i
Ui-/ui’&‘id1+fpidax—dd1
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We eliminate api .j/ O0x, using the momentum equation

J

du, aui ,
W1=fpui—a—t—d'r-fpuigidf+fpiJBX—JdT (10)

Next, we examine dK/dt. By definition

g':ifl u.u, drt
at atd 3 P W%

Since the surface moves with the fluid, d/dt (pd'r) = 0, so that

du
dK _ i
a?—fpui e dt (11)v
Next, the work done by body forces is clearly
= 12
W2 f o} uigi dr (12)

And finally, with k being the heat conduction coefficient,
oT f ) oT
= = 1
Q fk n, s——xi da B—-Xi k a—-xi dt (13)

Inserting (10) to (13) into (9), and transforming

d = [,
Rﬁldr=ﬁdtdt

du
ar >) OT B!
f" at 97 =fax—i <k a;z;) dv +jpij &, dr

Now this equation must hold for any surface; therefore, it must be true

we obtain

that the integrands form the equation




DILATATIVE DISSIPATION

du,

ar _ i, 9 oT
Pat =~ Pij ij * Bxi k Bx;> (14)

Usually, it is more convenient to work with the total energy per unit
mass, E =1 +-%uiui =1 +-§Gﬂﬁi The energy and momentum equations can

be combined in vector form to give

P %% = p @&+ VKV - p T+ NVD) + 2 V(AD) + w(@-9)T) (15)

Dilatative Dissipation

Any element of a compressible fluid may be expanding or contract-
ing as it moves. Suppose, in particular, that an element is being com=-
pressed the same from all sides so that it remains geometrically similar
to itself in shape. If we transform our equations to a uniformiy moving
coordinate system which instantaneously has the average velocity of the
element, then the velocity in the vicinity of the element will be =
(where k is a constant) to lowest order in |§ﬂ. This corresponds to an
expansion of the element if k > O or contraction if Kk < 0. (If the
velocity to lowest order were ﬁ’= arn‘Fz then this would correspond to
an infinite rate of change of density for n < O and no rate of change

of density for n > 0.) Inserting @ = K into (14) reduces it to

d1 |
o gg = V(kVD) - 3¢ [p-Bx(%+%u)]

The quantity in brackets is the total pressure defined in (8), and the

significance of this quantity now becomes apparent. Unless the dilata~-

tion pressure vanishes (bybhaving A+ 2/5 B = O), then there is a
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viscous dissipation in spherically symmetric dilatation.

There are expansions or contractions which do not maintain the
geometric similarity of an element. An example is the contraction due
to a plane piston pushing against a fluid. For these, vanishing of the
dilatation pressure does not remove the dissipation.

There is considerable evidence that many fluids behave as though
their first and second coefficients of viscdsity were very different,
the relation between them being quite variable from fluid to fluid. For

such fluids, the dilatation pressure is a real and important quantity.

Discussion of the Dilatation Pressure

In the next section of this chapter it is shown how the total
kinetic energy of an aggregate of monatomic molecules can be divided,
in macroscopic viewpoints, into kfnetic and internal parts. The former
results from the mean velocity of all the molecules, while the latter,
which really is also a kinetic energy, results from the individual fluc-
tuations from the mean velocity. For more complicated molecules, there
is an additional éontribution<to the internal energy, arising from
vibrations and rotations within the molecules themselvés. The two atoms
of a diatomic molecule, for example, may vibrate along the line between
them, or may rotate about either of two axes perpendicular to that line.
Thus there are three internal "degrees of freedom” in addition to the
three translational degrees (cdrresponding to motion in each direction
of three-dimensional. space). Only at high temperatures, however, is

the vibrational degree of freedom excited.

-124-




DISCUSSION OF THE DILATATION PRESSURE

Statistical mechanical arguments show that in equilibrium of the
gas, all "active" degrees of freedom have, on the average, the same amount
of energy; (some degrees, such as the diatomic vibrational one mentioned
above, are excluded under some conditions by quantum mechanical effects.)
If, however, some influence changes the state of the gas rapidly, then
there may be a delay before new equilibrium is reached. The internal
motions may be excited or relaxed only after numerous collisions, and
s0 lag behind the changes in translational internal energy. The dilata-
tion pressure arises as a result of this lag.

Let I1 and I, be the specific internal energies associated with

2
the translational and internal degrees of freedom, respectively. We as-
sume that the translational degrees all have the same specific energy,
€y and the internal degrees all have the same specific energy, ey
Then with a total of n degrees of freedom I, = 3e,, I, = (n - 3)e2,
the total specific internal energy is I = 11 + 12 = 3e1 +(n - 5)e2.

It is also shown in the next section that for a monatomic gas the
pressure -is given by

2
=< pI
P=3p

In that special case, there are no internal degrees ot freedom, so

complicated molecules, the pressure is still associated with the trans-

lational internal energy only, so that, in general,

|
i
that I arises completely from translational energy. Likewise for more
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Now

H
n

2 I+
'n

B

(n - 3) (e -e)

so that

pI +

=2
P=1

s

(n - 3)p(e, - e))

(Note that in equilibrium, when e = e, this equation of state is that

of a polytropic gas, for whichy - 1 = 2/n, or

The validity of this result is well demonstrated by the fact that under
mos? circumstances such diatomic gases as oxygen and hydrogen, which
possess five active degrees of freedom, are well represented by y = 7/5.)
Next, as an approximate model of nonequilibrium processes, we as-
sume that the energy e, is always tending towards e, at a rate which is

proportional to their difference

De
2 _
o ot = e e

1 2

where O is a constant with dimensions of time, the "relaxation time."

Thus the pressure is
De
2 2
p=(y-1pI+5 (n-3)p 5
Finally, we assume that the processes are nearly in equilibrium, so that

a is small; the relaxation time is short compared with times for signifi-

cant chaﬁge in the gross fluid configuration. Then, since
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2_1D
35 =apg t O (@
we get
2a DI
P=(7-1)plf;§(n-5)p5§

plus terms proportional to a2 which are here neglected. Finally, we use

the hydrodynamic equation

= = - pVu

to obtain
p=(y-1)pel - [—2—%9(1& - 3)] v
n

This is the total pressure, as defined in (8), and comparison with that

equation shows that

A+ 2 m Esgzip(n - 3)
3 2
n
and thus vanishes for monatomic gases (n = 3) or for very fast relaxa-

tion (a = O)o

Introduction to Rigorous Viscosity Theory

The diffusion approach to derivation of the viscous equations was
filled with assumptions which may be accepted as reasonable, but which
have no firm basis for argument. A really satisfactory mathematical
description of hydrodynemic processes can arise only from a careful

exsmination of the detailed molecular dynamics. We here present a
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highly simplified version of such an examination, which, however, intro-
duces many of the features of the more elegant treatments.* We shall see
that this new viewpoint will lead to some surprising reinterpretations
of previously studied hydrodynamic processes,

We start by reviewing the concept of a gas (to which the present
discussion is limited). A gas consists of numerous molecﬁles moving very
rapidly with infrequent encounters. We give more precision to this state-
ment as follows:

1. "Numerous" means that within any region of macroscopic space
(i.e., any region over which the mean molecular characteristics do not
change much), the number of molecules is large compared with one.

2. "Rapidly" means that the velocity of an individual molecule is
large compared with the average velocity of its numerous neighbors.

3, "Infrequent" means that a molecule spends nearly 100% of its
time traveling in "free space" (i.e., not in interaction with any other
molecule).

| Consider the following idealized situation. At t = O, a uniform
distribution of molecules is moving in a direction normal to a flat
rigid wall, all molecules having precisely the same velocity. Each

molecule hitting the wall reflects and moves back into the approaching

* See, for example: G. N. Patterson, "Molecular Flow of Gases," John
. Wiley and Sons, Inc., New York, 1956, for a much more extensive
introduction; or the classical treatment in detail: Sydney Chapman
and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,"
Cambridge University Press, 1952,
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cloud with the negative of its original - o - =
velocity. Thus there arises a widening e e e )
zone against the wall defined by the e
motion of the first group of molecules e e e )
to reflect from the wall. Assume at - - = - -
first that there are no molecular col- e B )
lisions. Then in the 2zone next to the e I T )

wall there are Jjust as many molecules

ol

moving to the left as to the right, so -
e e B e

that the mean velocity of the gas is 1=
e e B e R

zero; the gas has "come to rest.” -
e e s I e IR

The leftward moving boundary of the -
N T 2 e

zone is the "front of a shock." - -
- =) =l =

In the zone there is no macro- le

-

scopic kinetic energy, because the

mean gas velocity is zero. The energy of the molecules is now called

internal'energy, and it is easy to see that the internal energy per '

unit mass is just equal to the kinetic energy per unit mass of the gas .

outside of the shock zone. The shock speed relative to the approaching

fluid is twice the speed of the fluid itself. (Note thaﬁ this corres-

ponds to y = 3 in our previous treatment of an infinite shock in a poly-

tropic gas. The correspondence is not accidental, as we shall see below.)
The assumption of no molecular collisions is like the assumption

of no viscosity in the macroscopic viewpoint. The effect of molecular

-129-




VIII. THEORY OF VISCOSITY

encounters is to decreasé the mean leftward speed of the reflected par-
f.icles, particularly of the earliest ones reflected, thus "smearing out"
the otherwise-sharp shock.
The individual velocity of molecule J, ﬁ;, can be written in terms
-

of the mean velocity in its neighborhood, < u'j >, as

T, =<T. >+ 560
J dJ

J

Thus < &, > = O. Also, since

J
22 <R S22+ 2< T >e87
J J J J J
we obtain
1 -2 1 - 2 1 - 2
§<uj >-§<uj> +—2-<8uj > (16)

That is, the average kinetic energy per unit mass of the molecules
(which is the true total energy per unit mass) is equal to the kinetic
energy per unit mass of the mean motion plus an additional term which
can only be identified as I, the internal energy per unit mass, as viewed
macroscopically.

The fundamental entity in gas dynamics is the distribution func-

tion, f, of molecular velocities. It is defined in such a way that

- =
u

f(u,r,t) dr du

is the number of molecules at time t which have velocities in the inter-
- - -) -
val du about u and which lie in the space interval dr about r. We shall

suppose throughout that £ — 0 as |Gﬂ ~ % o, sufficiently rapidly that

ell desired integrals converge. Then, with M = molecule mass,
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M j; D) £H(F,Tt) aF = p(Tt) <@ > (17)

where Q(ﬁj is any function of @ for which an average may be desired, and
p(;zt) is the macroscopic density, mass per unit volume.

The distribution fuﬁction is the subject of Liouville's Theorem,
which is the basic starting place for the derivations to follow. It can
be stated: Along the motion of any particle, f(ﬁt?ﬁt) is a constant;
that is

— f(u,r,t) =0 (18)

To demonstrate the validity of this theorem, we consider the

integral of f over some region of six dimensional coordinate-velocity

fff(ﬁ’,?’,t) & @

This integral represents the total number of particles within the region

space

of integration; that is, the total number of particles whose coordinates
lie within the spatial part of the region and whose velocities lie within
the velocity part. Now suppose that the region of integration moves in
such a way that a particle on its surface remains always on its surface.,
Then no particle away from the surface can ever come to lie thereon, and

the number of interior particles is forever constant.

4 [f@ze @@ ar-o

The rule for such differentiation, (I-3), can be generalized to this
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six-dimensional case; with the summation convention for the integrand,

_[/‘_B_ a:u‘ + af(D:g;Dt)] a7 ar = 0

or

[/3—1; dﬁ’d?+/ff[g;§ %———J & &7 =

Now the partial derivatives in the bracket are with respect to the inde-
pendent variables Xy U and t, so that auj/axj = 0, Also, we shall

assume the forces on the particles are independent of velocity, so that

Du,

T Dt

= FJ(F’,t)

as a result of which a(Duj/Dt)/buj = 0. (The assumption of velocity-

independent forces is not restrictive for our present purposes.) Thus

JF = awar=0

must hold for any arbitrary region of integration and the integrand must

vanish identically.

We now carry out the differentiation indicated in (18) and write

the result in component form

ar . of PX3  ar DYy _
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This is called the Liouville Equation.

As a simple example of the derivation of hydrodynamic equations,
we consider the special case in which the molecules are confined to
move in one direction only (chosen parallel to the x-axis), and all

quantities of interest are functions of that coordinate only. Then

(19) becomes

of Of F of
iR awm - °

Multiply this by Q(u) and integrate over all values of u. Then
o0
of of F of _
L{QE-F@S}E*-QEE du=0

or

> [ > [ .
55\/im Qf du + 5;\[; Qu f du + %\/:w [%%? - f g%J du=0

from which

3 <Q> . dp<Qu> gF W _
5t~ " m o 0 (20)

If, for example, Q = 1, then

Jdp . 3p<;?> -0 (21)

which is the familiar conservation-of-mass equation with a rigorous inter-

pretation of the velocity therein.

The other two conservation equations (1-24) can also be derived.
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In (20) put u = <uw> + 5u. Then

Jp<@> . p<R> <u> . p<Ru>_ pF _ R . |
5t * T ox *T o T wm S (22)

Iet Q = u. Then this becomes the momentum equation

9pLu> | dp<u>? , Sp<udu> _ ﬂ‘
dt ox ox m

- The quantity F/m is the force per unit mass exerted on the fluid. Also,
<u du>=<(<u> + du)du> = <(8u)2>. In this enforced true one-dimensional
case, there can be no viscosity. A molecular encounter can only result

in a direct back scatter which, to conserve energy and momentum, is equi-
valent to no encounter at all. This means that we must identify p<(8u)2>

with the pressure in the gas:
2
p=p <(Bu)™> (23)

Next we let Q@ = %— u2, so that

<Q> = 1§<(<u>+ 6u)2> = 32-<u2> + -;-<(8u)2>
=K+ 1

the sum of the specific kinetic and internal energies — see (16) and

the discussion following. Thus (22) becomes
]
Op(k + I) , % [p<u>(X + I)] + Ba"x (<3 wou>] = &:BE
Now

<ulsu> = <(<u>? + 2<u>bu + But)Bu>= 2<u> <(Bu)> + <tu)>>
= -‘2)-<u>p + <( su)5>
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so that
Mgﬂ;ﬂ + Sbi [p<u> (K + I)]+ Bpa<}:1> =p F<mu> - 3% [% <(su)?>]

The terms on the right show the generalization of (I-2k). The first

one is the work done‘ by the force on the gas; the second one is a heat

conduction term.

Note that the identifications

p

p <(§u)%

I 15 <(u)?>

lead to the equation of state
p=2p1

which is the polytropic equation of state with 7 = 3.
Much more reslistic is this same treatment applied to a three-
dimensional gas. Multiply (19) by Q(ul,ua,ui) and integrate over all

velocity space. Then, in the same way as above,

F

3 J

with @ = 1, we get the mass conservation equation

L+ —5—=0 (25)

X

J

With Q@ = u,, we get the momentum conservation equation
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op<u,> pF.
1 O [p<u,><u,> + p<tu, bu>] = —t (26)
St L Y ML R

This is to be compared with (6), (in which equation F, = 0). With

2

a=3uZ, so that <@ = ¥ <u;>® + $<(su,)%>= K + I, we get the
2 i i i ’

energy conservation equation

p(K+I) 9
St + ij [p <uJ> (K+1I)+ p<ui> < Suiauj>]
. | (27)
oF .u, _
= —-%—*1 - 32— [z e <(5ui)2 SuJ>]

dJ

The generalized stress tensor, corresponding to (7), is thus

Py =P <&u, Suj> (28)

so that the total pressure, analogous to (8), is
1

pT = —3' <(8ui)2> (29)

Because I = % <(8ui)2>, we are led to the equation of state

p I

o)
]
(1))

which is the polytropic equation for a gas with y = 5/ 3. This supports
the assertion in earlier chapters that a monatomic gas has this form of
state equation.

This discussion serves only as an introduction to the rigorous

study of gas dynamics. The next step, which we shall not here follow,
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INTRODUCTION TO RIGOROUS VISCOSITY THEORY

is to determine the distribution function for situations of interest.
With it, one can then perform the averaging integrations. The formula-
tion requires the use of additional physical principles, ahd leads to
the famous Boltzmann equation. The subsequent manipulations are long
and tedious, but generally rewarding in their resﬁlts. They lead to the
stress tensor (7) as the lowest order approximation to reality, and pre-
dict the dependence of A and W on the details of molecular structure.
They also lead to higher order corrections to the stress tensor — in
principle the results can be as accurate as desired. The reader is
directed to the references cited earlier in this chapter for the de-

tailed discussion and for additional bibliography. -~
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CHAPTER IX

EXAMPLES OF VISCOUS AND CONDUCTING FLOWS

The Equations Specialized

To illustrate some of the properties of viscous and conducting

flows, we present a few specialized solutions.

*
available in numerous books and papers.

Many more of these are

We specialize to plane, two-dimensional flow, in which case the

appropriate equations are

du
P T

av
P

~ 3p i du . 5 v . d
_pgx-&+&h(}\+2p)&+7\§d+yy

3 [ i ov . du] 3
Dgy - g% + 3 _(K + 2p) 3 + A r + 5%

N 131G R

u %?X
X Yy

@] 3 M)

G-3] o

&2 e

ez 22 )

2 les el e s -3

*See

for example, S. Pai,"Viscous Flow Theory, I-Laminar Flow," D. Van
Nostrand Company, Inc., Princeton, 1956.
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Here u and v are the velocities in the x and y directions, respectively,
and gx,gy are the corresponding accelerations due to exterior forces.
The quantity, k, is the heat coﬁduction coefficient. E =1 + -;—(u2 + v2).

We shall limit our discussion to polytropic gases for which
p=1(y - 1)p I. We shall further simplify the equations by additional
assumptions: |

1. The two coefficients of viscosity are proportional to each
other: A = AW where A is a dimensionless constant. (The special case
in which A + 2/3 u = 0 is included.) In general, A > - 2/3.

2. The simplest model of a gas predicts that the heat conduction
coefficient and viscosity coefficient are related to the specific heat

(here a constant) in such a way that

oT _ oI
k&=uB&

where B is a dimensionless constant related to y by

13=——Zh——9'5 ()

We shall assume this to be true for all cases discussed.
The equations can be rearranged and condensed considerably,

especially with introduction of the abbreviations

Pr——‘-p+uA@3x+%vb—,> (5)

a=u (.2 (6)

Then
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pg%=pgx+%(r’+2ug‘§)+% (7
o g = olug, + ve,) |
t 2 [Pur gy e S (BT 4 ud)] (9)

o) 0 2
+6—§,[PV+QH+H§};(BI+V)]

We shall not try to work with these equations even in this relatively
simplified form, but shall specialize even further. Suppose, for example,

that all quantities are independent of x, and gy = 0. Then

Ay 30 3) (10
p<§+v%>=%[-p+u(ﬁ.+2)g§-] (1)

p<g%+v%>= p;lg>(+%{-pv+p%[(1 +§A) v2+%u2+BI':]v} (12)_

Diffusion of the Viscous Effect

Consider the problem of determining the motion of a semi-infinite
gas adjacent to a flat plate at y = 0. The plate commences impulsively
to move at t = O with velocity u, parallel to itself., We assume that u
is small enough that viscous heating of the gas is negligible. Then p

and p can be considered constants, and v is effectively zero. Under

these circumstances, (10) alone is sufficient; it becomes, with p/p ='v,




DIFFUSION OF THE VISCOUS EFFECT

2
- v 22 (13)

&g
&

We note, from arguments of dimensionality, that the solution must be a
function of y/,/ vt only. Substituting this into (13), one obtains an
easily solved, ordinary differential equation. Application of the boun-

dary conditions yields
y/2 vt

u = uo< - :/—;2‘— l e-zz dz> (14)

What is the thickness of the disturbed area after the plate has
moved a distance L? The thickness is defined as the distance to the
point at which u = 1/2 u_. At that point, y, = 0.954 Vvt =y vt.

But t = l/uo so that

&=~ [0 (15)
o]

For air, for example, v = 0.156 cmg/sec. Thus, if the plate moves at,
say, 1000 cm/sec (well below the speed of sound at ordinary conditions),
then, when L = 100 cm, the thickness of the "boundary layer" is only
0.125 cm. The extreme thinness of this layer for objects moving
through air has led to a large, highly successful field of approximate
viscous hydrodynamics called boundary-layer theory. Outside of this
layer, nonviscous flow theory is appropriate. Within it, special tech-
niques are required.

Problems concerning vehicles or projectiles traveling through
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IX. EXAMPLES OF VISCOUS AND CONDUCTING FLOWS

air can often be solved without requiring the use of general viscous
theory. This is true when the boundary layer is always in thickness a
negligible fraction of the size of the important components of the sys-
tem. A vast and important amount of literature treats many interesting
phases of these boundary-layer problems — stability, resistance, heat

transfer, etc. We shall not be concerned further with these problems

here.

The quentity on the right of (15) is of special significance.

If L is the length of a projectile, then 1/V/Luo i1s a measure of the
relative influence of the boundary layer on the externa; flow character-
istics. The quantity Re = Luo/v is called the Reynolds number for the
flow. It arises frequently in problems of viscous flow. Such quantities
as drag and lift coefficients are often expressed as functions of it.

It is not, perhaps, inappropriate to notice that the formula for
force per unit areas on the plate F = u (bu/ay)y=o follows easily from
(13). The momentum per unit plate area of the fluid above the plate is

o

4) p udy. Thus, from (13), its time rate of change is

2 N
p‘/h o u dv = <§u
—s dy = -
(o} ay2 syygzo

This is the force on the fluid, which is equal and opposite to that on

the plate. In the problem at hand,




DIFFUSION OF THE VISCOUS EFFECT

Suppose that, in this nonsteady problem, the plate remained fixed

but that there was initially some velocity distribution.

How fast does

this smooth itself out due to viscosity? It is still appropriate to use

(13). We expand the velocity function into Fourier integrals

o0 [}
1 ikx it
u(y,t) = Eif f A, € e dkdw
- 00 - 00

Substitution of this into (13) shows that it is a solution provided

A (iw + vk2) =0

or
Ay = By 5(iw + vke)

where 8(x) is the Dirac delta function

8(x) =0, x#0
+b

f 8(x) ax = 1, a,b > 0
-8

Thus, the general solution of (13) is:

«©
2
1 ikx -vk't
u(y,t) = 5x \/ﬁ Ak e e ~dk
o OO0 .

(16)

This shows that a component of the solution with wavelength A= 2x/k de-

cays exponentially, dropping to 1/e of its value in time Ke/hxzv. In air,

for example, if the disturbance is of length 100 cm, its "decay time" is

~ 40O sec.
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Two Steady-State Solutions

These two problems concern the flow between parallel plates.
In the first one, there is no external force; the lower plate is moving
with constant velocity u,. In the second one, the lower plate is at
rest and a constant acceleration is felt by the gas, parallel to the

channel. In each case, the v component of velocity is zero, so that

(10), (11), (12) become
g + % (1 %1;) =0

0 (17)

S

pug+%[u%(-é-u2+31)] =0 |

In problem 1, g = 0, and the equations can be integrated [with

p = (7 - 1)pI] to give
W=

=B ' (18)

pl =
oI ou
u<B5—y+u$)=cj

where &, B and ¢ are constants.

It is not yet necessary to specify the manner in which p varies.

Let

du _ du I
3y ~ 3I 3y

This is valid provided that y can be eliminated from the equations.




TWO STEADY-STATE SOLUTIONS

We substitute this into (18) and eliminate the terms with y, obtaining

du _ 0 du
B+u3dI a o1

for which p is also eliminated. This can be integrated to give

2

IB + 2 u” = = u + constant (19)

Rla

As an example, suppose that both wall temperatures are held fixed so

that I = IO at top and bottom. Then

14221
BRI + s u 2 uu + BIO

At mid-channel, we thus have
2
u
o)

I=1,+%88

To proceed with the complete solution we must specify the variation of
k. The strongest variation of W in most gases is with temperature; we

assume that
wo=uT
where M and n are constants. From (18)

2 n o n oI of
v/t 8 7 °

uolalay

From this may be obtained the first integral

2
n oI _ 2 2a1
I 35—‘/ c - 5 (2u)
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wherein 02 is a constant of integration. A second integral is easily ob-
tained for certain values of n (such as O, %, 1); for others, the integra-
tion can be performed numerically. Qualitatively, the solutions appear

as shown in the figure, in which the ordinate is I/Im or u/uo.

If n = 0, then u(y) is linear and

| I/1
m I(y) is quadratic.

For the case in which I varies
little from its maximum value, Im’ it
is possible to obtain an approximate

u/ug
solution

2
_ 1 (du 2
I-Im'§§<zs§ (3 = )
0 y top

where du is the total change in velocity over the channel width, Oy, and

Y is the height of the channel center.
In problem 2, we take u = constant. Then (17) becomes
2

o)
pg + H -—% =0
oy

-0

|
O

5. (3

It is straightforward to obtain the lowest Qrder solution for g small:

ted *<g0> (1213) ('yﬁ ’ﬁ

u gu y(2y -y)




TWO STEADY-STATE SOLUTIONS

where I = Io at top and bottom, and Py is the average density. Note that

2

u

I =1 +=—2
m o

3B

so that the central material speed can be a fairly large fraction of the
initial sound speed before the approximate solution is no longer valid.
We may proceed to obtain an approximation to the build-up of this

steady-state solution. We begin with

2

X8V 2
y

where v = p/p. This equation comes from (10) in which we put v = O and
B = constant. Using the result of (16), we could write the solution

immediately

[ ]

u=gt+ L ACk) e

ikx e-vkzt
2x
=00

dk

and put into this the boundary conditions that u=0at y =0, y = 2 e

We proceed instead as follows. Assume that there exists a solu-

2
u=‘1/(t)< -%}-,;)

Substitution of this into (21) gives an equation for ¥

tion

The assumed solution is clearly wrong; the signal from the edges affects
gradually the otherwise uniformly accelerating gas. Nevertheless, the

following analysis gives a good representation of the gross gas behavior.
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Since the equation for ¥ must not depend upon y, we replace the

equation by its average over the channel

1 .24y _
gymdt—gym'w
or
a¥ v o8
dt 2 Y
yﬁ m

This has the solution (in which ¥ = O at t = 0)

gy
= m
¥ = v

[1 - exp| - é_%ﬁ }

Im

This leads to an expression for u which can be integrated over the chan-

nel to give the time dependence of the momentum per unit length

3

= S
v 1 - exp(} 5

Im

Comparison of this result with that obtained by numerical integration of
the exact equations shows surprisingly good agreement for the approxi-

mation.

Finite Thickness of Shocks

The iﬁclusion of viscosity and heat-conduction effects in the
hydrodynamic equations can remove the tendency for solutions to become
discontinuous, shocks being replaced by narrow zoues over which the
fluid characteristics vary rapidly but continuously. To illustrate

this, we examine in detail the structure of a one-dimensional com-

pression wave moving unchanged through a polytropic gas, which is at
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rest at x = +o. The appropriate equations are derived from (7) and (9),

together with the mass equation:
dp . Opu _
5t * % = O

2, du_2d
Pt TP T\ ox TP

g

»

d du o1
+ =1 5 -
o 5— (1 ) + pu 5— (I1+xu ) S5 \-Pu + pou o+ 0.8 5%
where poo = N+ 24 and p0§ = Bu, and Po is the initial density. We look
for a traveling wave solution, in which all quantities are functions of
x - vt only. The constant velocity, v, will then be the rate of propaga-

tion of the wave. Thus, with y=x - vt

0

"

d
a; (-Vp + pu)

(wvp + o) =L 3)
dy dy o dy

N du a1
(-vp + pu) (I + ) = 3 pu + p OU T & + po§ ™

These may be integrated once; we apply the boundary conditions that at

Xx=+0, u=0, p=p, P=D, I

o o I, and du/dy = dI/qy = 0. Then

it

-VDo + pu = = Vp

o
vou= po du +
po po dy D Po
1 .2y _ du
-voo(I + 35U ) = - pu + p,Ou 3y + P § - vo I,

We put p = (7 - 1) pI, and p is readily eliminated to give
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o (y-1)Iv )

_vu..ody v -1 + (7 1) IO (22)

1 2 _ uvl du al _

v(I0 -I) - VU = - (y = 1) vo5 TGt ¢ T (23)

Next we eliminate I (but not 4I/dy):

a1 du 2 2 y+1 »

v -u _ _u _ .
C?y+ﬁaa§-7-1<co v o+ 5 uv) (24)

where ci = 7(7 -1) Io is the square of the far-right sound speed. Note
that if { and o are both zero, then either u = O or 2(05 - v2) + (y + 1) uv
= 0. These two end conditions exactly characterize a shock [see IV-
(17)], and thus justify association of the results with the structure of
a shock.

We shall now consider two extreme cases in which o =0 or { = O.
Many more details than we shall present, as well as discussions of in-
between cases, have been given in articles such as that by Hayes.* Even
though in all real gases the effects of viscosity and heat conduction
are of nearly equal importance, there is still interest in these two ex-
treme cases. With viscosity only, the results are applicable to analysis
of certain finite-difference-approximation methods which employ "artifi-
cial viscosity" to improve their results. With conduction only, the
analysis refers to & gas in which radiation is transported. The true
shock structure in a real gas does not differ qualitatively from that

in the viscosity-only case. The results of the conduction-only case

*W. D. Hayes, in "Fundamentals of Gas Dynamics," H. W. Emmons, ed.,
Vol. III, Section D, Princeton University Press, 1958.
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show that a discontinuity may still be present even if { is very large.

Case I, Viscosity Only. With { = 0, Eq. (24) is easily integra-

ble if o is constant; the qualitative features can be seen even with

variable 0. The equation becomes

N =)

dy v =-u\o

Since o is always positive, and the right side is always negative and
finite for u between its extreme values, there is always a smooth transi-

tion through the "shock region." The velocity profile appears as shown

in the figure

The width of the shock can be defined as

u

V= w/ax

o
where subzero refers to the point at which u has decreased to half its

value at x = -», Thus
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2
1 <: co\
u V - —
o) 7 Y+ 1 v
v2 _ c2
dﬁ\ o

ax,
° 20<}v2 + ci)

and

20(v° + )
(7 + V(2 - D) (%)

For a weak shock (v = co) the shock width may become large. For a shock

of infinite strength (co = 0) the width becomes

20
W =
) Z7 + 1)v
For normal air, for example, ¢ = 0.15 cm2/sec and y = 1.4, so that for a

strong shock

L

where v is measured in cm/sec. Normal alir sound speed is about 3.3 X 10
cm/sec; the speed of a strong shock would be much greater so that w
would be much less than 5 X 10-6 cm — a very short distance in most sit-

uations of interest.

Even for a weak shock, the thickness may be quite small. In the

weak-shock limit,

v ~ L o (
Y + 1
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where p is the average pressure and dp is the change in pressure across

the shock. For normal air, this becomes

wa~1lX 1077 <%%> cm
op.

so that even if &p were 1% of p, the shock thickness would only be about
0.001 cm.

Case II, Conduction Only. With o =0, (22) becomes a relation be-

tween u and I from which we may observe directly some of the features of
interest. The results have been given in detail by Landau and Lifshitz.*
With finite heat conductivity, I must be continuous and monotoniéally in-
creasing towards the left. Consider, however, the root of (22) which
starts at the far right withu =0, I = Io' As u increases, so also
does I, and if the shock is strong enough, I will reach its far-left
value before u does. At this point a discontinuity must occur in which
u changes to ths other root of (22) for which I equals its far-left
value. The result is an"isothermal discontinuity" in velocity and den-
sity. The velocity profile is shown qualitatively in the following

figure.

*L. D. Landau and E. M. Lifshitz, "Fluid Mechanics," Pergamon Press,
Ltd., London; Addison-Wesley Publishing Company, Inc., Reading, Mass.;
1959, p. 342.
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\ . X

Sound Waves in a Viscous, Conducting Gas

Consider a gas whose state is perturbed only slightly from the uni-
form state in which p = Pyr P = po, I= Io’ and u = 0, The equations of

the previous section can be linearized to a good degree of approximation.

s

+ 0,
2
ou _ o“u
Po 3t = %Py 5;5 - gg
oI _ ou g_a_%_l_
DOE—-pOFX pO axz

Put p = (y - 1)pI and define ¢ = p/po, a= I/Io-

Then
3 du
PO
du da + >%u
+(7-1)I[-S—H]-c—-——=0




‘

SOUND WAVES IN A VISCOUS, CONDUCTING GAS

2
Zoo-ng-tigeo
X

A expli(kx + wt)]

a =
@ =B exp[i(kx + ot)]
u=D exp[i(kx + wt)]

We look for progressive wave solutions of the form
|
|
|

and find that the condition for existence of such solutions is

0 w k

in + 0k2
ik ik z;rjjﬁryjﬁg =0
(iv + t&°) © (y - 1)ik

or

2 L w . 2y 2y _
w k- - ik + (;—:—Ty-fg (i + ok)(iw + ¢k™) = O
Consider now three special cases. If o = { = O, then

.2 2
o = y(y - 1) Kk .Io

The sound speed is given by

Re o
k

-
=

where Re means the real part. Thus the nonviscous, nonconducting limit
gives the familiar formula of previous chapters.

In the case 0 = 0, { -, the sound speed (the "isothermal sound
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speed") is thus found to be

& = € sothermal ~ ¥ (r - 1)10

in confirmation of the speculation of the last section.
If g »», then @ is purely imaginary and the sound speed is zero.
In the limit that 0 and { are small, the equation for @ can be

solved for the lowest order viséosity and conduction effects. The result

1.2
©=k [7(y - DI, + T [y - 1) ¢+ 0]

neglecting quadratic and higher terms in € and 0. Thus to this order of

is

approximation, the change in w due to viscosity and heat conduction is
purely imaginary; the sound speed is not affected. The correction term

results in a damping of the sound waves by the factor
2
k7t
exp 1- 55 [y - 1) £+ 70]}

For a sound wave in normal air of wave length 100 em (so that
k = 2x/100 cm“1) the damping time will thus be many hundreds of seconds,
during which time the signal will have gone many miles. The viscous
damping is in that case negligible compared with. that from inverse-square
attenuation,

Neglect of the higher-order terms (which affect sound speed) is

Jjustified provided that

kokc
o}




VERY LARGE CONDUCTIVITY

where c, is the unperturbed sound speed. For normal air, only very
short wave length signals are affected, with negligible change noticed

for wave lengths significantly greater than 10-u cm.

Very Large Conductivity

If a fluid 1s very hot, then its dynamics may be affected appre-
ciably by the presence of radiation. At sufficiently high temperatures,
the fluid may be effectively completely transparent and in continuous
local thermodynamic equilibrium with the radiation field. The tempera-
ture is then the same everywhere and radiation pressure gradients vanish.
The equations of mass and momentum conservation are as before, but the
equation of state becomes a relation between pressure and density only.
The energy equation is therefore no longer needea in a study of the
fluid dynamics and is useful only for determining the radiation energy

flux necessary to maintain the isothermal state. We may thus write

Q

£+ V(o) = 0

oW
P 3t

o @)

in which derivative the temperature is held constant. The quantity a,

+ p(TV)T + al Vp =0

ct

where

which has the dimensions of velocity, is the isothermal sound speed.

It is a function of density, and may depend explicitly on time, through
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variations of temperature with time.

For a truly-one-dimensional polytropic gas,

a =,/(7 -1)1I

oo oo du

i I el el o)

where [see III-(2)]

g

l

a 1n £ (29)
Po

and Py is an arbitrary constant with the dimeﬁsion of density.
Linearization of (28) leads to the wave equation, with a propaga-
tion speed of a for low-amplitude signals, thus Justifying again the
eqﬁation for isothermal sound speed. The linearization can be accom-
plished by dropping the terms with u undifferentiated, or by the follow-

. ing procedure. In lagrangian coordinates, (28) can be written

du o/a oo
3x tee 3§§ =0
oo o/a du

3 tae 3;0 =0

These can be rearranged to give the following exact equation for o:

2 -0fa 2 g/a
Pe) e2 + a2 o%e - = 0 (30)
ot axo
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To linearize, expand the exponentials in power series, keeping only up
through the first order terms; the result is again the simple wave equa-
tion. An approximation method can be developed based on retention of

successively higher terms in the expansion. Alternately, with

P = éi/a = p/po, the eXact equation can be written
2 2 2
022 - 2] - ¥ 220
ot axo

We shall now demonstrate a few simple properties of the isother-
mal polytropic gas, particularly where these properties differ qualita-
tively from those of the corresponding nonconducting gas. We first ob-
gserve that there is a formal correspondence between the isothermal
equations and the isentropic equations. If in the latter we let ¥y =1,
then p is proportional to p and. the mass and momentum equations have the
same essential form as the isothermal equations. Thus it is possible to
derive some of the isothermal relations from previous results. In many
cases, however, it is simpler to work with the isothermal equations them-
selves.

Structure of the isothermal rarefaction is determined from the
similarity solution in which u and ¢ depend on y = x/t only. The equa-

tions become

du do
u - —_—t g — =0
(w-) g dy
do du
u - _+a__=0
( y)dy dy

-159-




IX. EXAMPLES OF VISCOUS AND CONDUCTING FLOWS

The boundary conditions we choose are

"
o

at x = -w, P =P, (so that 0 = 0), and u

>0

]
c

at x = +o, p < p, (so that o < 0), and u

The corresponding solution within the rarefaction zone is

u=a+y

0g=-a-y

Thus the density profile in the rarefaction is

- o, e(-1-x/at)

At x = -at, p = Pg No matter how large may be u_, the density will not
drop to zero. Thus cavitation cannot occur in such an isothermal rare-
faction.

The shock reletions can be derived in the same manner as in

Chapter IV. For a steady shock moving with velocity v into an isothermal

gas at rest, the following relations are summarized




VERY LARGE CONDUCTIVITY

or

(32)
2 2 r
P Ju ba~ +u_
B—— o=
+
x12 + 4 a2 -u

©

2
u—
P ot

and the compression across the shock can be arbitrarily high. [This is
in contrast to the nonconducting case where the density ratio is bounded

by the quantity (y + 1)/(y - 1)].
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CHAPTER X

SOME SPECIAL PROBLEMS

There are certain fluid-dynamic problems for which complete,
exact solutions have been obtained. Several of fhese are discussed in
this chapter, because they illustrate well some of the methods of solu-
tion and because they pertain to common situations of interest. They are
also useful for comﬁarison with the results of approximation methods;for

evaluation of their accuracy.

Problem 1., Flow Past a Wedge

Gas flowing past én infinite two-dimensional wedge of half angle
«a approaches a steacy state configuration as time passes. If the incom-
ing gas is moving sufficiently fast,
then an attached shock (dotted line)
is formed. Since there is no signi-

ficant length to the system (the

appearance of the configuration is
.independent of magnification), then

the shock line must be straight.




PROBLEM 1. FLOW PAST A WEDGE

Furthermore, the trajectory of each element of fluid will be a pair of
straight lines as shown; beyond the shock, the trajectory must be
parallel to the side of the wedge., In the diagram, the solid line is
the trajectory of a fluid element. /

It is convenient to resolve /
the velocity on each side of the

shock into components parallel and

perpendicular to the shock. Then

the relations across the shock can y, o)
be formed in just the same way as
they were for the simple one-dimensional shock in Chapter IV. ILet m

be the mass per unit area per unit time crossing the shock.

m=pu sin 6= pu sin (6 - @) , (1)

To conserve tangential momentum,

m1_ cos 6 = m cos (6 - @) (2)

To conserve normal momentum,

p, +m_ sin 6 =p +m sin (6 - @) (3)

To conserve energy,

mE + P %, sin 6 = mE + pu sin (8 - @) (%)

These four relations, together with the equation of state, are suffi-
cient to determine the shock angle, as well as the field variaebles be-

hind the shock, all in terms of the known input field variables.
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X. SOME SPECIAL PROBLEMS

Consider, for example, the case of a polytropic gas for which
E=p/[(y - 1)p] + 1/2 u2. In terms of the incoming Mach number
(M = ratio of uo to initial sound speed), one can show by straightfor-
ward manipulation that

2+ (y-1) M2 sin2 6 (5)
(y + 1) M2 sin 6 cos 6

tan (6 - @) =

For given values of M and &, 6 can be found, and the other field varia-

bles obtained from

_ tan 6
P = 0o Tan(6 - & (6)

_ cos 6
U =Y Cos(e - @) (71

2 .2 tan(e - a) :
Py * PY, S 8 [1 " tan 6 } (8)

ko]
1]

Note, from (5), that for infinite Mach number (incoming gas is cold),

-1
+ 1

tan (6 - Q) = ; tan 6

so that

7 + 1

P= Py T

in agreement with (IV-25). In this infinite Mach number case, one can

solve explicitly for 6

1 2 2
tane—(,,_.l)tana [1 "‘/1"(7 '1)tan a:]

This solution is real only if tan a </ 1/(72 - 1). For greater angles,




PROBLEM 2. THE SHOCK TUBE

the shock is no longer attached to the wedge, and a different procedure
is required to solve the problem.

If a = O (there is just a point disturbance to the flow field),
then from (5) sin 6 = 1/M.

Convenient graphs and tables have been prepared by various

*
authors to show numerical results for many situations.

Problem 2. The Shock Tube

A one-dimensional hydrodynamic system is divided into two semli-
infinite sections by a diaphragm.

Initially, there is gas at rest on

both sides, all at the same tem- p- ¢
perature. To the left of the dia-
P Ll
phragm, the gas is initially at a :
]
higher density and pressure, g !
INITIAL | X
and p _, than on the right, N and | DIAPHRAGM
‘ POSITION
P, On both sides the specific in- p- b \
= 1

* P { c
ternal energy is I . P w

At t = 0, the diaphragm is

removed, and at any later time there

is observed a shock, s, moving to LATER ) X

the right; a contact discontinuity,

*See, for references, A. H. Shapiro, "The Dynamics and Thermodynamics of
Compressible Fluid Flow, " Volume 1, Art. 16.2, The Ronald Press Company,

New York, 1953.

-165-




X. SOME SPECIAL PROBLEMS
¢, moving to the right and a rarefaction wave, bounded by points Q and
b, moving to the left.

There is no significant length to the system (the appearance of
the configuration at a later time is a magnification of an earlier ap-
pearance), so that each of the points moves with constant speed. The
appearance to the left has already been discussed in Chapter III. The
contact discontinuity in density is tentatively allowed, since similar-
ity arguments cannot remove it. We shall see that if the density is
assumed continuous at ¢, then the problem is overdetermined. The point
at ¢ behaves as if it were a piston pushing with uniform speed; and
thus produces the kind of shock profile already discussed.

There are eight unknown quantities to be determined in the sys-
tem: Prs Yys Pp» IL and Prs Ups Pgs IR' Through the equation of state,
two of these, IL and IR, can be eliminated. Since no gas passes over
the contact discontinuity, we must have b uR (we call them both uc).
Also the pressure must be continuous across the contact discontinuity
(otherwise, there would be an ;nfinite acceleration); we put P, = Py Eigc.
We are thus left with four unknown quantities, PLs PR uc, IE , for
vhich four relations are needed. These are obtained as follows (we as-

sume a polytropic gas): Across the shock, we use the relations of

Chapter IV in the forms

(e, - pc)G: - E‘-R>= -l (9)




PROBLEM 2. THE SHOCK TUBE

P, - D =7r>+~pR
P, + B P, * P

(10)
Across the rarefaction, entropy is conserved — see (II-4),
= - i
— = —— 1
Pe I |

Finally, a characteristic line dx/dt = u + ¢, goes across the rarefaction

~— gee Chapter III — so that

75 7D
__f_ 2 au s ’f‘ ( : (12)
7y -1V o ¢ r-1 Py,

We thus have the required four relations among the four unknowns. It is

convenient to define

Pp_ p_
A==
oo | (13)
P
P‘E_c_
P+ )

so that A is known from the initial configuration. Straightforward mani-
pulation of (9) through (12) results in an equation determining P in
terms of A and 7:

2 /\l(1--'-) 2
1-P 2 P2
7(1(+ P) 21 TP (y - 1)2 [1 - (X 7] ' (1%)

Some values of P for various values of A and y are shown in the following

table.
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-7
A b/2 5/3 6/ /5 8/6
3 1.66859 1.68018 1,68789  1.693%9 1.69751
4 1.88474 1.90514 1.91875  1.92846 1.9357h
5 2.06428 2.09391 2.113711 2,12787 2.13849
8 2.47558 2.53295 2.57150 2.59917 2.61997
16 3.15841 3.28224 3.36650  3.42740 3.47343
With P determined, the rest of the unknown quantities are éasily
calculated:
., 201 +P) + (p-1)
T O R ) (13)
s
1.2
PL = Py (2N ) (16)
Pp
Pp+
IL = IO E—;— (18)
[
7'Io IL.
uc=2‘ VR (1 --i:> (19)
The shock moves with absolute speed
u
v = SR (20)
8. PP,

The point ¢ moves, of course, with absolute speed Us while the points

Q and bmove with sound speed relative to the gas, or with absolute speeds
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PROBLEM 3. SHOCK HITTING A DENSITY DISCONTINUITY

AR [7(y - 1) I o (21)

Yo" - Jw(y -1) I (22)

Problem 3., Shock Hitting a Density Discontinuity

In the simplest form of this problem, a one-dimensional, steady-
state shock passes through a uniform polytropic gas which is cold and at
rest. At some point, it strikes a discontinuity in material, beyond

which there is another (different)uniform polytropic gas which also

initially is cold and at rest. We shall tentatively assume that a rare=-

faction is reflected back. The condition under which this is the case

INCOMING

SHOGK I

P- — P':O| p+,0
1

p
1
i
BEFORE STRIKING -l . X
|
7] | 72
1
P- b |
\\\\ |
|
PL
|
P ¢ l PR_SR
|
N X

| |

|
|

’—"‘—’
AFTER STRIKING 5 X
2
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X. SOME SPECIAL PROBLEMS

will follow from the analysis. In any case a shock will be transmitted

into the material to the right.
The incoming shock is characterized by the infinite shock rela-

tions (IV-25):

71 + 1) )
71 + 1
vs = (. 5 .> u_

(23)

!
(VB
'

The analysis follows closely that for the shock tube problem. The same

quantities (with the same symbols) are unknown, and the four equations

determining them are [arising as in (9) to (12)]:

P N pR) ¢




PROBLEM 3. SHOCK HITTING A DENSITY DISCONTINUITY

Define, for convenience

e oyt )
SR CAE ) ()
_r
P=—
7, - (26)

where A is known from the input conditions and P is to be determined.

Some menipulation shows that P is determined in terms of A énd 74 by

I 71 [*/— (‘/—>1/71} ‘ I-,i 2 (27)

71"1

If, now, a rarefaction is indeed reflected, then P > 1 is required.
This corresponds to A > 1, which, therefore, 4is the required condition
for a reflected rarefaction. Some values of P for various values of A

and 7 are given below.

71

a | e 5/3 6/4 1/5 8/6

2 1.54587  1.47088  1.49165  1.50933  1.52477
b 2.18104 2.24690 2.30289 2.35154 239453
8 3.42041 3.55215 3.66725 3,76930 3.86089
12 L., 52L404 4,71103 4.87742 5.0268M 5.16226

With P known, the other unknown quantities in the system can

be calculateds
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]

pp, = p_(P)

o 2,0 G2 y
¢ " u-*/% .

‘ | 72 + 1
v(right shock) = G ( 5 ) J

H]

=
|

The points @ and p move to the left with sound speed relative to the

material. One may notice, however, that the point 'b moves to the
right relative to the rest frame if y, <2,

Notice that if p+,o = 0 (the shock hits a free suzjface), then one
can derive the fact that the free surface will move with the sum of the
material speed in the shock plus the escape speed of the shocked mater-
ial (as derived in Chapter III). This is proved as follows. As

P, , ?0, A »and P»x, From (27), we see that

2
2
é...; 3_71__..}.]
P 71-1

so that, from (28),

271
u, = u 1+
¢ - 71-']

With (IV-25), this becomes

2¢.

uc—’u_+71 o

with the second term being just the escape speed (III-7).




PROBLEM 3. SHOCK HITTING A DENSITY DISCONTINUITY

A second case must also be considered, that in which a shock is re-
flected back from the discontinuity. It is expected that this will occur

if A< 1. We shall indeed see the general result

P o (71 +1) > 1 rarefaction reflected

(29)

2
p+,o (72 +1) < 1 shock reflected

In the reflected-shock case, the four conditions relating the four unknowns

are all derived from shock relations:

Y, + 1
R _ 2 (30)
p+,o 72
2p
P . =(72+1)u% - (31)
+,0
P -P p_-p
L Sfa g (32)
P_ + P, p_* P
1 1 2
(p, - 2) (-';;-;:>= - (ug-u) (33)

The relation between A and P can be derived in similar fashion:

71-1

\/I=‘/—-(1-P)\/71P+71-P+1 (34)

Since P < 1 is required for the shock reflection, we see that this means
A < 1, completing the proof of (29). Some values of P for various values

of A and 71 are given below.
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X. SOME SPECIAL PROBLEMS
7
A h/2 5/3 6/k 7/5 8/6
0.2 0.505768 0.480057 0.460067 0.443920 0.430509
0.k 0.658085 0.639622 0.625000 0.613003 0.602905
0.6 0.784182 0.772321 0.762822 0.754954 0.748275
0.8 0.896522 0.890783 0.886148 0.882281 0.878982

With P known, the other quantities in the system can be calculated

]-71(1 +P)+ (1 - P)]
LTR-LO+P) - (o).

72+1
pR=p+,o(72-1>

A (
uc=u_ I)'

y =u\72+1>
SR (o 2

(p_u)) - (pou,

v_  (absolute) =
5. p_ - Pp )

(35)

In the special case that Pro="® (the shock strikes a rigid wall and re-
>

flects back), then A = 0 and P = (71 - 1)/ 37, = 1). In this case,

N

(771}
PL = P -
L ;-1

v_ (absolute)= =(7. = 1) u
sL 1 -

v (5)
IL= 7, I ’ J

(36)
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Another question of interest is: How can one use such a reflective sys-
tem to produce a stationary shock for study? This can be accomplished

if the reflected shock at s. moves with zero speed. According to (35),

L

the condition for this is pu_= The result of some algebraic

pL c’
manipulation shows that this can be realized provided

oo (7 + 1) (g - 1)°

= (37)
p+,0 (72 + 1) 3 - 71

A

]
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X. SOME SPECIAL PROBLEMS

Problem 4. The Reactive Shock or Detonation

We assume that the conditions on each side of the detonation front
are uniform, and that the detonation itself takes place instantaneously

along a moving discontinuity.

y
I=1 I=0
-8
P =D, p=0
u=0
u=u
S
) P=p,
(o} Ds

Actually, the total internal energy per unit mass on the right
side is not zero, but K, the chemical energy per unit mass. With this
change, the shock relations [Equations (14), (15), (16) of Chapter IV]

are directly applicable
v(pg = 0,) = o u,

_ 2
p (p = p) = pp

I -K= SE <¢§_:_Sé>
S 2 PsPo
It is assumed that us is known; it is the velocity of the driving pis-
ton. We assume further that the detonation products can be represented
by a polytropic state equation; experiments show that this is a reason-

able assumption for many explosives.

These equations can be solved as follows [we have put
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PROBLEM 4, THE REACTIVE SHOCK OR DETONATION

p, = (r - 1) o I):

P [(x/uf)f(%“)/?*‘)] (38)
0, L 2Kju? na

I, =K + 3 ui | (29)
v=_(y- 1).5i.+ $Z;%_ll ug (ko)

In the limit that K — 0, these reduce to the familiar relations for an

infinite shock. With K > O, the detonation front moves faster than the

infinite shock, and the density behind the front is correspondingly less.
We note that the results predict that as u -0 (for K fixed)

the detonation speed becomes infinite. We thus expect that the results

are in error for small piston speeds. indeed, there is another reason

for believing this. We note that the sound speed just behind the detona-

tion is

cs =V/ 7(7 - 1)(K + % ui)

For sufficiently high piston velocities,_us + e is thus greater than v;
that is, signals from the piston can overtake the detonation front from
behind and thus influence it. For small piston velocities the above
model would predict us + cs < v and no signal could overtake the front
from behind. Thus, for piston speeds less than v - cs, no signal from

behind the front can catch up with it, and the detonation process must
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proceed in a manner independent of the motion of the piston. We thus

conclude that for an underdriven detonation, the front must move exactly

i

as for a critically driven detonation; that is, one for which Cg + u, = v,
(This condition, which determines the motion of an under-driven detona-
tion, is called the Chapman-Jouguet conditiom,) Substitution of fhe con~
ditions for an over-driven detonation into the Chapman-Jouguet relation

allows derivation of the following

&-=\/ 2y - 1) (41)
ué =3 . (42)
p, =2y -1) p K (43)
I = 7—23—71( o (uk)
c= it (45)

Just as for an infinite shock, the compression depends on y only.
Determination of the profile behind an underdriven detonation
can be made by means of the similarity method of Chapter V. We outline

the procedure briefly. The equations

FeaRe-2

p = A

ct
»

are applicable wherein A is a constant determined by the value of K.
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PROBLEM 4, THE REACTIVE SHOCK OR DETONATION

The substitution y = x/t and the assumption of dependence upon y only

lead to
.y 3, dou_ 4
Yay T Ty
du_ _dp
u- — an  am
p(u - y) 3y 3y

V4
p=4Ap
If these are to represent a detonation, then it is necessary that the

boundary conditions be satisfied:

aty=v<-=./2(72-1)l(>

2+l
P %
a= Y
Ty + 1
p=2(y-1) 0o K
- 2y
I= K

y + 1

Tt thus is necessary that the value of A (which determines the amount

L d
of entropy behind the detonation) be given by

The solution can be carried through, and the boundary conditions indeed

satisfied; the result is
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X. ©SOME SPECIAL PROBLEMS

R =
“'7+1<t >

y + 1 [(7")%+v]7'1'
7 o v

he)
!

Ehé solution continues back to the point where u = up, the piston ve-
locity. If p = O at the piston (so that the detonation takes place

against a vacuum) then the free surface of the gas moves such that

If the detonation takes place against a rigid wall, so that

u.p = O, then the velocity profile at some time after t = O is
\'4

g

: a X
The point at which the velocity drops to zero is x = a. We see from

the similarity solution that a = % vt. What is the total displacement
of material caused by the passing over of such a detonation wave? This

is determined by solving the differential .equation:

ax _ u(x,t) = ! (§§ -v) for %;

It popra > Sx=v

0 otherwise




PROBLEM 5. STEADY FLOW AROUND A SHARP CORNER

This has the solution
2

x=__7_x°_ _VIEM_ vE
y -1 y -1

wherein has been put the boundary condition x = X, at t = xo/v. When

the wave has Just passed by a particle, x = % vt, so that the final x of

the particle is given by

2
736 <§§;f+1 2x
X = m— | — - ——
7 -1 \x, 7 -1

or
)
2 |7
X Y 7+1
;o- = —_—?' T3 (2) (h'6)

A graph of this result is shown as follows:

.2 |-

—

1.0 1 |
| 2 3 4 5

Y

Problem 5. Steady Flow Around a Sharp Corner

A nonviscous, nonconducting,semi-infinite polytropic gas flowing

parallel to a flat surface approaches a corner in the surface. If the
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surface bends into the gas flow, then the wedge theory (Problem 1’ may
be applicable., If the surface bends away, then a steady expanding flow .
may occur. (In both cases, the gas speed must be at least that of sound
for a steady state to be present.) The latter flow, which concerns us

here, is often called Prandtl-Meyer flow.

—————— —— —— ————— . s w2 o> |
T -

TS S S S S S ~

We choose cylindrical coordinates with origin at the corner; u
and v are the components of velocity in the r and 6 directions, respec-

tively, and the equations are

where A is a fixed constant related to the entropy of the gas — see

(1I-4). In steady-state flow, the time derivatives vanish. Also, since

there is no length scale to the system, its appearance mst be




PROBLEM 5. STEADY FLOW AROUND A SHARP CORNER

independent of magnification; that is, u, v and p must be independent of r.

With these conditions, the equations simplify considerably:

' av do _
p<? + dé) + Vv ae 0

du
'V'--a-é'-—o

o(n s &)+ B -0

From the first and third of these,

Either v = ¢, or p is identically constant. The latter alternative leads
to the trivial solution of flow with no corner at ali, parallel to the
initial boundary. It is applicable up to the point at which v = c. In

the subsequent flow, p then changes and v = ¢ persists.

Om
e | _ Vo
\\\
v
\
Thus, the original flow persists up \
, \
to the angle, qn, such that \
\
\
V=V cos qM = c0 |
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&y = cos™ (:—9 : (47)

This is the angle of the "Mach line" from the corner. Beyond that angle,

or

the gas begins to turn.

With v = ¢, the equations become

dpe _
pu+de 0
du
"3 - °
Now
doc = 2 de
% ~°P3p

where we have introduced the abbreviation

e =2+ 1
y -1
Thus
2 de
u+b d—e—o
du
C-a'é'—-o

These have the solution

u=bA sin & + bB cos £ (48)
b b

- 6 _ 6

c=A cosb B sin,D

where A and B are constants of integration. The general boundary condi-

tions are

At 6 = g, v=c=c_, u=v sin g, .(lt9)
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We look first, however, at the case g, = 0 (i.e., v, = co). For this

simpler case, the solution becomes

u=>bc sin —
o

(50)

<
H
e}
]
o
o
a

o'io

How does the radial distance to a stream line vary with angle? From

ar _ .

dat

a6 _ v

at r
we derive

dae v

For the solution (50), this can be integrated to give

] -b°
r=7T <%os €> (51)

Note that the sound speed, and thus the density, drops to zero at
6= bx/2; the gas will turn through no greater angle than that. One can
show easily that the angular deflection of the stream line from horizon-

tal, a, is given by

P -1 (1 8 '
o= 0 5+ tan (; cot ;) (52)

For the more general boundary conditions, (49), analogous formulas may

be derived. Alternately, the supersonic input flow can be assumed to
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have turned from sonic, through some angle eo, and subsequent turning
measured from the radius vector at -eo. To accomplish this it is useful
to express 0 as a function of local Mach number M1 which is defined as

the ratio of the gas speed to the sound speed:

(53)

In turn, one can find the fictitious sound speed from which this turn
started, and the fictitious initial radius for any stream line, and con-
tinue the solution as if from the initial sonic flow. This alternative
procedure is especially useful for situations for which tablés have been
provided for Prandtl-Meyer solutions turning from sonic.

Finally, for reference, we include the formula for & as a function

of M, derived from (52) and (53):




PROBLEM 6. INSTABILITY OF INTERFACE BETWEEN FLUIDS

Problem 6. Instability of Interface Between Fluids

There are various examples of fluid motions in which the question
of interface stability arises. If, fdr example, a heavy fluid is sus-
pended over a lighter one in a downward gravitational field, any irregu-
larity of the interface will increase in amplitude. The upper fluid
will fall into the lower one in a set of narrow penetrating spikes,
while the lower fluid will float up in round-topped bubbles. This is
an example of "Taylor instability."

Another type, known as "Helmholtz instability" occurs along a
slip plane between two fluids (or within one fluid). Any slight irregu-
larity is amplified, resulting in mixing if there is no counter process.
An example is seen in the formation of water waves from the wind; another
is in the flapping of a flag.

These two types of instability are best known for incompressible
fluids (that is, for fluids whose motions proceed at velocities very
small compared with their sound speeds). When accelerations are great
and velocities large, then effects of compressibility can become impor-
tant. Taylor instability problems then refer to the effects of a com-
pression wave, or shock, sweeping across an irregular interface.

We shall here discuss several types of surface instability, in-
cluding mainly those for incompressible fluids because of their ease in
solving and because of their qualitative applicability to some comprese

sible-fluld situations.
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Taylor Instability, Fluid Incompressible

We consider the case of low amplitude interface motions. For an
incompressible fluid, in which the density of an element remains forever

constant, the mass equation in two-dimensional flow becomes — see I-(2)

%-2-{-%:0 (55)

in which u and v are the velocity components in the x and Yy directionsy
respectively. In addition, the momentum equation, with vertical acceler-

ation only (positive upwards) breaks into the two components — see I-(33).

o WL Lo (56)
p%+%-og=o (57)

in which we have dropped the transport term (ﬁﬁVﬂﬁ?because of the smallness
of the velocities. (The various approximations employed in this section
can be verified as applicable by carefully keeping higher order terms in
the velocity components or in the perturbation amplitudes, and noting the
smallness of their contributions in the ranges of magnitudes we are con-
sidering.)

Thus, we have three équations in three unknowﬁs, u, v, and p. To

solve them, we first note that (55) is satisfied if we can find a function,

®, such that -
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and
2 2
..a_._g_{._a—g:o (59)
ox oy

The function, @, is called a potential function. Furthermore, with

these substitutions, (56) and (57) become

g% p - p'g% =0

é% P-p %% - pgf> =0

which two equations are consistent and lead to

_ oP
P =P, et PEY
Now this is a two-fluid problem with & horizontal surface.of

separation. Let the surface of separation be denoted by the equation

y = A(t) cos kx (60)

We label the upper fluid with subscript 1, and the lower with subscript
2, and suppose that there is a potential function for each fluid, ¢1

and @2. ILikewise there is a pressure solution for each fluid
5¢1
Po,1 T P18 * P 33

o,
Py = Py0 * PV + P 3%

P,
(61)

It may be verified that the following potential functions are solutions

of (59):
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P, = e £(t) cos k¥
(62)

L]

P, = - eky £(t) cos kx

(We have not specified the boundary conditions’used in finding the solu-
tion of (59); they are such that the fluid is at rest at Yy =% o and
that all features have the same periodicity in x as the initial inter-
face between fluids.) |
We may now obtain the solution in complete form by applying the

matching conditions at the interface. These are:

1. The interface moves with the fluid velocity.

2. The pressure is continuous across the interface.

The first of these can be approximated in this low amplitude study by
w(y = 0) = @9
t y=o

which reduces to

dA
3 = £(t)

The second interface condition expresses the equality of the two pres-

sures in (61) at y = 0. Thus

Po,1 P (é A cos kx +-%§ cos kx>

N
arf
= po,2 + py (? A cos kx - 3t ©os k;)

Now the low amplitude stage we are considering is supposed to be but a
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slight perturbation from complete equilibrium a3t zero amplitude, so
thet the zero-amplitude pressures must Jjust balance, and the results of

applying the two interface conditions all reduce to

£ - ) ©

Thué, with g <O (i.e., the acceleration pointing downward), then the co-
efficient of A on the right is positive when the upper fluid is the more
dense — leading to exponentially increasing ampiitude ~ and negative

when the upper fluid is the less dense — leading to a time-wise oscil-

lation of amplitude. The first case is that of Taylor instability.

Combined Helmholtz and Taylor Instabilities

Again we consider the case of low amplitude perturbations. The
situation is as in (a) except that now the upper fluid moves to the
right with velocity u =1U relative to the lower one (which can be con-
sidered at rest without loss of generality). The equations must be
generalized somewhat, and we shall employ a slightly different technique
for solving them.

The mass equation remains the same as before, (55), and we satisfy
it again with upper and lower potential functions 91 and ¢2. The momen~
tum equations for the upper fluid, however, must retain the one compon-

ent of transport relative to the rightward motion, so that the equations

now are written
ou
p3-€+ p U

Feoo (64)
+ %% -pg =0 '

Ny g

ov
p~a€+pU
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Thus the two pressure integrals, analogous to (61),become

%,
Py =P, A\ &t YU Sk,

(65)
= + (. + a¢2>
Py = P50 * P\E T 3%
We now write the equation of the interface in the form
- eu)t - ikx (66)

o

and take for the potential functions (which satisfy (59) and proper boun-

dary conditions)

e-ky + ot -~ ikx _
o

Ux

(67)
ky + ot - ikx

9, =By, e

where ¢, B,and w are constants to be determined, and k is the wave num-
ber of the interface disturbance. Again the same two interface condi-
tions must apply, and there must also in this manner of treatment be an

expression for continuity of vertical velocity across the interface.

Thus, for the upper fluid

v(y = 0) = @%’ + U %}{)Fo

while for the lower fluid

v(y = 0) = @%)y:o

These two conditions lead to the determination of o and B
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wlE

™
]
i

=ie

The continuity-of-pressure condition shows that in complete equilibrium,

p-"'p]UQ:‘p

0, 0,2

and that in lowest order perturbation,
p1<g +om - i kUa> = p2(g + Bw)

which reduces, finally, to

2
ikUp. P, - P U p,P
P %(D2+1>+ 2l (68)

Py + P 2t P (p2+p1) \

With U = O, the result is the same as before. With U # O, there are two
additional contributions. The first on the right of (68) expresses the
mean translation velocity of the waves. The second, under the square
root, expresses the Helmholtz instability effect. It is always positive,
hence always contributes to giving w a real part corresponding to ex-
ponential growth of the instability. Even in the case that g = 0 and

Py = Pos the instability remains, in which case

o=3ku(iz1)

The results can be extended even further to include the effects
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*
of surface tension; rather than repeat the analysis, we simply present

the final equation for the exponential growth factor

2
w = 1kUp1 [(p _ + e 2 - kT (69)
1t 02 + 91 (o, +p,) Py + 0,

in which T is the surface tension., It is seen, as could have been ex-

pected, that surface tension has a stabilizing effect. Likewise it can
be seen that there is a most-unstable wave length, obtained by maximiz-
ing the second term on the right of (69) -~ provided the second term has
a real maximum.

The effects of viscosity are much more difficult to include in full

*
generality; however, in some cases it 1s sufficiently accurate to write

1kUp - o Up,0
o = 1 §<p 1), 2% kT (70)
P+ 02 + py. (o, + pyq) Py + Py
where
R, + W
v E'_lfr—ié
Py * 0

and Hys u2 are the coefficients of viscosity. Discussions of the vali-

dity of various approximation procedures have been given in the refer-

ences mentioned above. Chandrasekhar and Hide both give in addition

% See, for example, Horace Lamb, "Hydrodynamics," Sixth Edition, Dover
Publications, New York, 1932, Section 268, p. 461,

*¥Various treatments have been given by Bellman and Pennington, Quart.
Appl. Math., 12, 151, 1954; by S. Chandrasekhar, Proc. Cambridge Phil.
Soc., 51, 162 1955, and by R. Hide, Proc. Cambridge Phil. Soc., 51,

179, 1955.
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discussions of the effects of gradual density gradients, and later
authors have solved various problems concerning stebility of variable.
atmospheres.

At present there appears to exist no comprehensive discussion of
the effects of diffusion on interface instability, although a qualita-

tive argument can be given to show that the effects are likely to in-

crease stability.
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INDEX

Accelerated viscous flow, 146
Acceleration, 35
Active degrees of freedom, 125
Adiabat, 82
Adiabatic equation of state, 42
Adiabatic heating, M1
Aerodynamics, 7,84
Angular momentum, 49
conservation of, 50
Angular velocity, Lk
rate of change of, 46
Atmosphere, equilibrium state of, 56
sound in variable density of, 55

Boltzmann equation, 137
Boundary layer, thickness of, 141

Chapman-Jouguet condition, 178
Characteristic line, 53,63
Characteristic solution, 58,89
Characterization of flvid, 9,15
Chemical energy, 176
Chemical reactions, 14
Circulation, 47
Coefficient, of heat conduction, 122
of viscosity, 115,118
Cohesive fluids, 113
Compression, meximum from shock, 80
monotonic, 82
by shock, T1

Compression wave in viscous fluid, 148

Conduction, coefficient of, 122
of heat, 10,12,k4k
rate of, 120

Conservation, of angular momentum, 50
of energy, 20,3%7,72,123,135,136,138
laws of, 9
of mass, 17,72,133,135
of momentum, 19,36,72,118,120,134,136,138

Conservative form of differential
equations, 28, 29

Constant-state region, 63

Contact discontinuity, 71

Contiguity, assumption of, 15

Continuous fluid, approximetion of, 11
definition of, 14

Coordinate, cylindrical 32
Eulerian, 16
Lagrangian, 16

Coordinate systems, 31,58

Corner, flow around, 181

Curved shock, 71

Cylindrical coordinates, 32

Cylindrical shell, expansion of, 33

D.., 5
Déﬂping due to viscosity, 143
Damping of sound waves, 156
Decay of shock pulse, 91
Decay rate, shock pressure, 102,105
Decomposition of velocity field, 51
Deformation tensor, 52
Degrees of freedom, 124
active, 125
Density, 16
Derivative, along fluid motion, 21
of volume integral, 26
Detonation, underdriven, 178




Detonation theory, 176
Diaphragm, fractured, 165
Diatomic molecule, 124
Differential equations, conservative
form of, 28,29

Diffusion, of molecules, 113

of velocity, 115

of viscous effect, 140
Dilatation pressure, 119, 124
Dilatative dissipation, 123
Discontinuity, T1
Dissipation, dilatative, 123
Distribution function, molecular, 130
Disturbance, small, 53
Drag, viscous, 11k

Energy, 16
conservation of, 20,37,72,123,135,
136,138
Energy conservation equation, 21,72,
123,135,136,138
Energy equation, general derivation
of, 120
internal, 16,40
kinetic,16
potential, 38
Energy equation, general derivation
of, 120
Entropy, 10,16,39,42,43
change across shock, 81
Equation, energy conservation, 21,
72,123,135,136,138
mass conservation, 17,72,133,135
momentum conservation,
20,72,118,120,134,136,138
of state, 9,34
of state, adiabatic, 42
of state, molecular theory, 136
of state, polytropic, 40,126,136
Equations, Eulerian form, 10,28,30,
41,84,87
hydrodynamic, molecular derivation
of, 133
integral form, 30
inverted, 106
Lagrangian form, 10,21,26,29,30,93
molecular derivation, 133
nonlinearity of, 76
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Equations, two dimensional, 138
viscous, conducting, 138 _
viscous, two-dimensional, 138

Equilibrium state of atmosphere, 56

Escape speed, 61,67 ,

Eulerian coordinate, 16

Eulerian form of equations, 10,28,

30,41,84,87

Expension, into a vacuum, 111
of cylindrical shell, 33

Explosions, 7

Explosive, 176

External forces, 35

Field, local decomposition of
velocity, 51

Field variables, 15,75

First coefficient of viscosity,115,118

Flow, accelerated viscous, 146
incompressible, 188
Prandtl-Meyer, 182

Fluid, characterization of, 9,15
definition of, 13
isentropic, 42,46,53
simple, 43,58

Fluids, cohesive, 113
isothermal, 157

Flux, 29

Flux tensor, 116,118

Force due to viscosity, 142

Forces, external, 35
nonlocal, 35

Fractured diaphragm, 165

Gas, ideal, 34,39
isentropic, 58
polytropic, 40,42,65,108,126
simple, 58

Gas constant, 35

Gas viscosity, 113

General solution of inverted

equations, 109
General solution of simple fluid, 65

Heat, coefficient of, 122

Heat conduction, 10,12,44
rate of, 120

Helmholtz instability, 187,191



Hodograph transformation, 106

Hugoniot relation, 82

Hydrodynamic equations, molecular
derivation, 133

Ideal gas, 34,39
Impulsive motion of plate, 140
Impulsive piston motion, 92
Incompressible flow, 188
Instability, Helmholtz, 187,191
Taylor, 187,188
Integral, time derivative of, 26
Integral derivation of shock rela-
tions, T3
Integral form of equations, 30
Integration, along fluid motion, 18
Interaction of shock and rarefaction,
91, 102
Internal energy, 16,40
behind shock, 80
molecular definition of, 130
Internal pressure, 3k
Inverted equations, general solution
of, 109
transformation to, 106
Inverted hydrodynamic equations, 106
Isentropic fluid, 42,46,53
Isentropic gas, 58
Isothermal fluid, 157
Isothermal rarefaction, 159
Isothermal shock, 160
Isothermal sound speed, 155

Jacobian, 26,27
Kinetic energy, 16

lagrangian coordinate, 16

lagrangian form of equations, 10,21,26,
29,30,93

Lagrangian shock speed, T5

Laws, conservation, 9

Liouville Equation, 132

Liouville's Theorem, 131

Mach line, 184
Mach number, 78,86,164
maximum behind shock, 80

Mass, conservation of, 17,72,133,135
Material velocity, 16

- Molecular derivation of equations, 133

Molecular
Molecular
Molecular

diffusion, 113
distribution function, 130
dynamics, 11, 13, 14, 127
Molecular relaxation, 126
Molecular velocity, 113
mean, 130
Molecule, diatomic, 124
Molecules, collision with wall, 127
diffusion of, 113
velocity of, 113

Momentum, 16
angular, 49
conservation of,

134,136,138

Momentum flux tensor, 116,118

19,36,72,118,120,

Nonlinearity of equations, 76

Nonlocal forces, 35

Numerical analysis, 7

Q ., 51

O%iique shock, 162

One~Dimensional flow, pseudo, 17
true, 17

Piston, arbitrary motion, 65
uniformly accelerating, 68
withdrawal from gas of, 60,66,90

Polytropic gas, 40,42,65,108,126
scaling, 86

Polytropic equation of state,kO,

126,136
one-dimensional, 135

Potential energy, 38

Potential function, 189

Prandtl-Meyer Flow, 182

Pressure, 16
dilatation, 119
total, 119,136

Progressive~wave solution, 57

Propagation speed, 55

Radiation, 150
Rankine-Hugoniot relations, 72
Rarefaction, 11




Rarefaction, due to piston withdrawal, 90
interaction of shock and, 91,102
isothermal, 159
overtaking shock, 102

Rates of strain, 117

Reactive shock, 176

Relaxation, molecular, 126

Reynolds number, 118,142

Rotation tensor, 52

Scaling, 84,85,118
polytropic, 86
Second coefficient of viscosity, 118
Second law of thermodynamics, 39
Self-similar solution, 87,93
Shell, cylindrical expansion of, 33
Shock, 10,11,70
always compressive, 81
compression by, T1
maximum from, 80
curved, Ti
formation of, 67,69,70,75
hitting a density discontinuity, 169
infinite strength of, 79,80
into fluid at rest, 77
isothermal, 160
oblique, 162
production of, 11,67,75
reactive, 176
thickness of, in air, 152
tube theory of, 165
weak, 103
Shock pressure decay rate, 102,105
Shock pulse, decay of, 91
Shock relations, fundamental derivation
of, T2
general, T4,75,T7
integral derivation of, T3
polytropic gas, 77,78
special cases, T7
Shock signals, weak, 10,53
Shock speed, 71
Lagrangian, 75
Shock structure, 12,70
conduction only, 153
theory of, 148
viscosity only, 151
Similarity solution, general, 87
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Similarity solution,
for shock pulse, 93
Similarity transformation, 86
Simple fluid, 43,58
definition of, 14
Simple gas, 58
Simple isentropic fluid, 46
Simple wave, 63
general solution for, 64
Small disturbance, 53
Smoothing, viscous, 143
Solution, characteristic, 58,89
example of, for viscous flow, 14k
general, for y = 3, 110,111
of inverted equations, 109
progressive-~wave, 57
self-similar, 87,93
for simple wave, 64
Sound in variable density
atmosphere, 55
Sound speed, 10,53,54,86
general formula for, 55
isothermal, 155
viscous conducting gas, 154
Sound waves, damping of, 156
Specific field variables,
definition of, 16
Specific heat, U1
Specific volume, 16
Speedgraph transformation, 106
Speed of escape, 61,67
Speed of propagation, 55
Speed of shock, T1
Lagrangian, 75
Speed of sound, 10,53,54,86
isothermal, 155
in viscous, conducting gas,154
State, equation of, 9,34
Stress, viscous, 12,13
Stress tensor, 119,136
Structure of shock, 12,70
" theory of, 148
Summation convention, 51,116
Symmetry of flux tensor, 116

Taylor instability, 187,188
Temperature 16,39,40
viscosity dependence on, 11k



Tensor notation, 51
Thermodynamics, second law of, 39
Thickness of boundary layer, 141
Thickness of shock, 7O

in air, 152 :

theory of, 148
Total pressure, 119,136
Transformation, Eulerian to

Lagrangian, 22,24

Lagrangian to Eulerian, 23

similarity, 86

to inverted equations, 106
Transformation determinant, 108

Vacuum, expansion into a, 111
Variable density atmosphere, 55
Variables, field, 15,73
Velocity, 16

angular, Ui

field, local decomposition of, 51

material, 16

mean molecular, 130

of molecules, 113
Viscosity, 10,12,4k4

artificial, 150

coefficient of, 115,118
damping due to, 143
force due to, 142
gaseous, 1135
theory of, 113,146
Viscous drag, 114
Viscous equations, two-dimensional, 138
Viscous flow, with acceleration, 146
example of solution, 14k
Viscous fluid, definition of, 13
Viscous force, 142
Viscous smoothing, 143
Viscous stress, 12,13 .
Volume integral, time derivative of, 26
Vorticity, 45

Wave, simple, 63

Wave equation, 55,56

Weak shock, 103

Weak signals, 10,53

Wedge, flow past, 162

Work done on fluid element, 120,122

Underdriven detonation, 178




